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A finite element scheme is described for the analysis of conjugate fluid flow and heat transfer
based on the Galerkin formulation. The general structure of the algorithm is presented and its
capabilities are highlighted. Results have been predicted for laminar flow over a backward facing
step and laminar natural convection in a square cavity and these compare well against those
obtained from a commercially available finite volume package and benchmark results. The
present scheme has been designed to be user-friendly with minimal data input so that it can be
used effectively to introduce and demonstrate the finite element technique to students as well as
others with limited knowledge of the method.

Nomenclature INTRODUCTION

c specific heat capacity

D width of square cavity FESTAL is a finite element package for solving the
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body forces in x and y directions
components of gravity in x and y
directions

Grashof number

step height

thermal conductivity

x direction cosine

y direction cosine

shape function for linear elements
shape function for quadrilateral elements
pressure

Prandtl number, v/a

Reynolds number, U, H/v
Rayleigh number, g BD3AT/va
temperature

cold and hot wall temperatures
fluid temperature at infinity
x-component of velocity
average inlet velocity
y-component of velocity
x-coordinate

y-coordinate.
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Greek symbols

thermal diffusivity

volumetric thermal expansion coefficient
temperature difference, T — T,

local coordinates for quadrilateral regions
nodal values of local coordinates

dynamic viscosity

kinematic viscosity, u/0

mass density

general variable.
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differential equations which describe the transfer
of momentum and energy in a fluid flow environ-
ment. The set of equations considered are the
Navier-Stokes and the energy equations limited to
the two-dimensional Cartesian coordinate and
axisymmetric systems. The package is capable of
tackling laminar flows with or without heat trans-
fer, heat conduction in solids, and conjugate heat
transfer-fluid flow problems where the domain of
interest has both solid and fluid regions. The
theoretical background on which FESTAL is
based, is first explained and the general structure of
the package is then illustrated. FESTAL is devel-
oped in such a way that any future improvements,
such as code enhancement and subsequent altera-
tions or modifications can be performed with ease.
This is essential with any finite element coding,
simply because the great majority of researchers
are now dedicating their efforts to finding better
techniques for modelling fluid flow problems using
finite element methodology.

The capabilities of FESTAL including the
domain geometry definition, types of problems and
output of results are outlined. Only two types of
elements are used to define the geometry of the
domain, namely the biquadratic eight-noded
shapes for defining regions and variations of
velocity components and temperature and bilinear
four-noded shapes for defining the pressure varia-
tions. The output of results from an analysis are
available as both numerical values and pictorial
representation either on screen display or hard
copy so that these may be compared or assessed
easily.

As mentioned previously the coding is under
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development. The current areas of the program
that are receiving attention are listed and possible
improvements that will be carried out are high-
lighted.

Numerical examples of laminar flows over a
backward facing step and in a square cavity are
provided. The results are compared with those
obtained from a commercially available finite
volume package in the first case and with previous
benchmark results in the latter.

The paper concludes by assessing the current
state of the program and pinpoints the areas where
further work needs to be carried out.

THEORETICAL BACKGROUND

The governing partial differential equations for
steady state two-dimensional laminar compressible
flow used by FESTAL are [1]:

Continuity 0(pu)/ox + agpv)/ay =0 (la)
X-momentum pudu/0x+pvou/dy=
—0p/0x+F, +u@?u/0x>*+*u/

dy (1b)
Y-momentum pudv/0x+pvdv/dy=

—0p/0y+F,+w@>v/0x*+d*v/

dy? : (1c)
Energy puc 0T/dx+pvc,dT/dy=

k(O T/d2+3T/dy?) (1d)

In addition, for flows with varying density, the
equation of state is

p=fp,T) (le)

which relates the density to pressure and tempera-
ture. For axisymmetric analysis appropriate terms
are added automatically by the program.

The Galerkin weighted residual approach [2] is
used to reduce the above non-linear simultaneous
equations into the assembled matrix form:

[A]{A}=(F} +{B) )

where A is the global coefficient matrix, F is the
global force vector, B is the global boundary condi-
tion vector and 4 is the variables (unknown) vector.
The above set is solved by an iterative process to
yield components of velocity, pressure and temper-
ature. A convergence sequence and a method of
variable updating is employed. The algorithm
contains seven major steps:

1—User input data is read.

2—Computational domain is generated.

3—Boundary conditions are set.

4—Initial values of the primitive variables are
assumed.

5—Updated values are solved for.

6—Changes in all variables are calculated
throughout the domain. If these fall within the
specified tolerance, the computation is com-
plete.

7—If the differences evaluated in step 6 do not
fall below the required tolerance, all variables

are updated. The steps 5 to 7 are repeated
until the required tolerance is satisfied at all
points within the domain.

The domain of interest is divided into eight-
noded isoparametric two-dimensional quadri-
lateral regions (Fig.1). The shape function for
these regions is [3]:

For corner nodes,

N =025(1+§&&)1 + nn)&iE +nn — 1),
i=1,3,5,7 (3a)

and for the midside nodes,
N=05(01-)1+nn),§=0,i=4,8 (3b)
N,=05(1+EE1— 72, 7,=0,i=2,6 (30)

1

Fig. 1. Isoparametric biquadratic eight-noded element for
velocity and temperature.

Each region is further divided into eight-noded
isoparametric elements with the same shape func-
tion as above. The above shape function is also
used for u, v, T. Hence

¢ =2 Ng €

i=]

where ¢, is the nodal value of velocity components
or temperature.

The four corner nodes of each eight-noded
element is used to construct the linear element for
p to avoid spurious pressures generated [4] (Fig. 2).
The shape function for this bilinear element is

M,=02501+&5€A+nm),i=1,2,3,4 (5)
P =z M.p, (6)

where p; is the nodal value of pressure.

STRUCTURE OF FESTAL

Figure 3 shows the general structure of
FESTAL. It consists of three main parts:
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Fig. 2. Isoparametric bilinear four-noded element for pressure.

Pre-Processor
General control data
Geometry and boundary conditions data
Enter diagnostic and formatted data output
Automatic mesh generation
Graphical representation of mesh
|
Processor

Formation of element matrices, assembly
of global matrices

Gaussian elimination
Back substitution

I

Post-Processor

Formatted results output
Graphical representation of results

Fig. 3. Schematic structure of FESTAL.

Pre-processor

At this level the necessary data regarding the
geometry and the imposed boundary conditions
are read from an already prepared data file. The
data is then sectioned, formatted and written into
the output file. The data is checked and if any errors
are detected, relevant error messages are initiated
and the program is then terminated. With the
correct input data the domain is automatically
divided into quadrilateral regions. The generated
mesh can then be inspected visually and if satisfact-
ory the analysis may be continued. The pre-proces-
sor contains the following parts:

(1) General control data

All the parameters controlling the next stage of the
data input phase are first read. These provide the
information regarding the type of flow, total
number and tolerance for iterations, type of
boundary conditions and dimensionless para-
meters (Re, Gr, Pr, [, 1),

(2) Geometry and boundary conditions data
The domain of interest is defined in terms of
quadrilateral regions and the size of each region.

The location of each region is defined through its
eight boundary points and their x and y co-
ordinates. Information regarding regions’ connect-
ivity and number of rows and columns are then
read. Prescription of boundary conditions is
performed through integer identifiers. These
specify the type of imposed condition.

(3) Error diagnostic and formatted data output
Once all the data is read, it is checked for correct-
ness. If any error is encountered, the relevant error
message is sent to both the terminal and the output
file. Any error would result in the termination of
the program. As the data is checked it is formatted,
sectioned and written to the output file for later
inspection by the user.

(4) Automatic mesh generation

The program uses the information provided in the
last section to divide each region into the desired
number of rows and columns. The global nodal and
elemental numbering is then performed. Once this
task is completed, the information on the geometry
based on regions provided by the user becomes
irrelevant and the program recognizes the shape of
the domain only through the nodal and elemental
information, which has been generated automatic-
ally in this section.

(5) Graphical representation of mesh

The generated mesh can be inspected for either
accidental or logical errors, which could not be
detected in section (3). Here the connectivity data
for regions and elements as well as nodal and
elemental numbering can be interrogated. At this
stage the program may be terminated if any errors
are detected. A hard copy of the mesh can be
obtained.

Processor

At this level the global coefficient matrix, A,
global force vector, F, and global boundary condi-
tion vector, B, are assembled (cf. equation (2)).
The iterative solution procedure is based on the
direct elimination frontal solution method [5].
However, the frontal solution is modified slightly to
allow for the unsymmetric nature of the global
matrices [6]. The results of each iteration are
written to the output file. The calculations end if the
solution converges to the required tolerance or if
the specified iteration number is exceeded. This
part of the program consists of the following
sections:

(1) Formation of elemental matrices, assembly of
global matrices

After the generation of elements, each element is
visited in turn and the coefficient matrix, force
vector are set up and the boundary conditions
incorporated. These are then placed in the appro-
priate places within the global matrices. This
process is repeated until the contributions of all
elements to a particular node are considered.
Therefore, the global matrices are never com-
pletely formed.
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(2) Gaussian elimination

Once a pre-assigned global core area is filled from
contributions from adjacent elements, the direct
Gaussian elimination process begins. The largest
diagonal entry in the core is found and used as a
pivot to eliminate the maximum pre-determined
number of equations. The reduced equations are
then written onto disk and Section (1) is repeated
until all elements have been included.

(3) Back substitution

Upon completion of the last part, unknown vari-
ables are determined. The elimination process will
have terminated with one coefficient and a cor-
responding term on the right hand side of the
equations. The variable associated with this co-
efficient is thus evaluated. Each back substitution
introduces an equation with one or more unknown
variable and all values are found by simple arith-
metic. The end product is an array of variable
magnitudes in ascending order of node numbers.

(4) Tolerance check and variable updating

After all the variables have been evaluated a
tolerance check is initiated. The tolerance limit is
set by the user. If the differences between the
recently evaluated values and the previous values
of the variables throughout the domain fall below
the tolerance limit, the calculation procedure is
stopped. However if this condition is not satisfied
the variables are updated and calculations
recommence. Updating takes the simple form of
finding the arithmetic mean for a variable by
considering the two above mentioned values. The
accuracy of the solution is dependent on the
tolerance set for the termination of the iterative
solution procedure.

Post-processor

Once a solution set is arrived at, the results are
available as numerical values or for visual inspec-
tion. This level of the program consists of:

(1) Formatted results output

The results are in the form of nodal values of
velocity components, pressure and temperature.
After each iteration these are written onto disk for
subsequent inspection. Also at the final iteraton,
the results are sent to a separate file, which may be
used as starting values for further future use of the
program.

(2) Pictorial representation of results

In this part the results can be interrogated visually
in order to assess their credibility. The mesh may
be drawn with velocity vectors, isobars and iso-
therms superimposed.

CAPABILITIES OF FESTAL

FESAL allows modelling of complicated geo-
metries with relative ease. The prescription of
boundary conditions forms an essential aspect of
any computer modelling. This aspect is dealt with

comprehensively so that the user can readily
imppse any type of desired boundary conditions.
The interactive graphical facility both before and
after the computations enables the user to inspect
the mesh and boundary conditions and perform the
necessary alterations.

The detailed description of the capabilities of
FESTAL are as follows:

Domain geometry and division

The domain is divided into quadrilateral eight-
noded regions (Fig.1). Any complex geometry,
with straight or curved boundaries or a combina-
tion, can be defined quite readily. The program
would require the coordinates of all boundary
points making up the domain as well as the
topology of regions and connectivity data. The
shape of each region is recognized through its
topology, whereas its orientation with respect to
other regions is recognized through the connect-
ivity data. The program requires another set of
data, which will indicate how regions should be
further divided up into elements. This is the row/
column data, which as well as providing the
number of rows and columns for each region,
would also give the sizing of all rows and columns
for the region. In this way a region can be made to
have any desired combination of large and small
sized elements. The division of the domain of
interest into quadrilateral regions enables the user
to accurately define any complex two-dimensional
shape with a minimum of data input.

Once the above sets of data are read the
automatic mesh generation routine commences.
Each region is further sub-divided into quadri-
lateral elements. This part of the program ends
after generating global node numbers and element
numbers.

Prescription of boundary conditions

In order to yield a unique solution, boundary
conditions for all variables must be specified.
These conditions prescribe values for velocity
components, pressure and temperature. FESTAL
enables the user to specify boundary conditions in
five different ways:

(1) Throughout the domain

In cases where the energy equation is separated
from the rest of the equation set (cf. equations (1a)-
(1d)), either the flow field or the temperature field
need to be solved. The former embraces a whole
range of isothermal problems where the tempera-
ture remains unchanged, whereas the latter
describes a non-flow situation (e.g. pure conduc-
tion). Therefore, any variable can be set to have a
fixed value throughout the domain of interest. Here
the type of the variable and its value must be
provided.

(2) Within a region

Any variable can be assigned to have a fixed value
within any region of the domain. This situation can
for example arise where a solid region is in contact
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with a fluid region. Then within the solid region,
velocity components and pressure would be set to
zero. This option requires the region number, type
of the variable and its value.

(3) Along aside of a region

This is the most useful type of boundary condition,
whereby any variable may be assigned a constant
value along a side for the region. Isothermal
surfaces and no-slip conditions can be modelled in
this way. Then the side number of the region
together with the type of the variable and its value
must be supplied.

(4) Atapoint

This option can be used in places where the nodal
value of a variable is to be fixed. This situation may
arise as a result of trying to define a section of the
domain where a known variation of a variable
exists, such as a parabolic inlet velocity profile. The
nodal number, type of the variable and its value
may be stated.

(5) Gradient type boundary conditions

This type of boundary conditions are encountered
usually on axes of symmetry or where there would
not be any further changes in a particular variable
with respect to a spatial coordinate. In this case the
element number and its side number together with
the type of the gradiant boundary condition and its
value must be provided.

Types of problems
The classes of problems that can be tackled by
FESTAL are as follows:

(1) Conduction in solids

FESTAL may be used to analyse heat conduction
problems in solids. This is possible by defining the
regions to be of solid type and providing the
thermal conductivities of the regions together with
any heat generation that may exist within them. The
analysis would yield the governing temperature
field in the domain of interest by providing nodal
values of temperature. Here only a modified
version of the energy equation (1d), i.e. for heat
conduction in solids, is solved for. This facility is
similar to FIESTA (7], and is included within
FESTAL.

(2) Laminar flow

FESTAL can be used to analyse laminar flow
fields. It would provide the two components of
velocity as well as pressure field. In this case the
energy equation is ignored altogether and only
equations (1a) to (1c) are considered.

(3) Conjugate solid/fluid situations
Here all the equations (1a) to (1d) are considered
simultaneously.

(4) 2-dimensional, axisymmetric problems

Through an integer identifier in the ‘control data’
section (Fig. 3), the program can switch between
two-dimensional or axisymmetric analysis. The use
of the axisymmetric option requires some modi-

fications to equations (la) to (1d), which is per-
formed automatically.

(5) Irrotational flow

Again through an integer identifier at the ‘control
data’ section FESTAL can switch to irrotational
fluid analysis, where it would yield nodal values of
velocity potential.

Error diagnostics

As data is read from an already prepared input
data file it is checked for correctness and accuracy
by the program. Error messages are initiated and
directed to both the terminal and the output file, if
any part of the input file contains erroneous data.
This check is carried out for both geometry and
boundary conditions data. Initiation of any error
message would cause the termination of the
program.

Graphical outputs

At the pre-processor level the geometry data
may be inspected visually. Incorrect geometry data
input would result in program failure. Hence by
interactively checking the created mesh, the pro-
gram can be terminated at this early stage. The geo-
metrical output of FESTAL may contain:

(1) Generated grid,

(2) region boundaries,

(3) domain boundaries, and

(4) region, element and node numbers.

Graphical outputs may also be obtained at the
post-processor level. The additional information
that can be requested are:

(1) lines of constant property, for pressure and
temperature, and

(2) velocity vector plot, where the option of zoom-
ing onto a particular area is available.

The graphical outputs can both be directed to the
terminal or hard copying facilities.

FUTURE DEVELOPMENTS

FESTAL is currently under development in
order to make it more efficient in problem speci-
fication, solution algorithm and in post-processing
and representation of results. The areas which are
being looked at are in the:

Pre-processor

The correct specification of a problem is the first
and most important step towards the successful
analysis of that problem. All the necessary informa-
tion regarding the geometry and boundary condi-
tions must be provided by the user, if the analysis is
to yield a unique solution set. At present the data is
read from an external file which has already been
prepared by the user. It is desired to develop the
pre-processor so that the necessary data can be
requested by FESTAL in an interactive manner.
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The data can then be checked and error messages
initiated if incorrect data is input.

Processor

The solution algorithm is based on the Galerkin
weighted residual method. This requires the use of
mixed-order velocity and pressure elements so as
to avoid spurious pressure modes. This to some
extent requires a large computer storage and long
solution times. Other recently developed tech-
niques where equal-order pressure and velocity
elements are used [8-14|, seem promising. The
computer storage requirement and run-time are
compatible with those of finite difference schemes.
Inclusion of the equal-order method in the pro-
cessor will make FESTAL more efficient and
applicable to a wider class of problems.

Post-processor

Results obtained at this level are in terms of
nodal values of velocity components, pressure and
temperature. However, other parameters of inter-
est such as stream function and vorticity may be
evaluated once the velocity field is determined.
This requires the inclusion of additional sub-
routines in the post-processor to extract the above
mentioned parameters. Also, further development
for graphical representation of results is needed.

EXAMPLES

Backward facing step

The first example is that of isothermal laminar
flow over a backward facing step. In such a situa-
tion flow separation occupies a large portion of the
flow domain. Indeed separation has been shown to
occur at very low values of the Reynolds number.
Here the advection terms in the momentum equa-
tions are dominant and for high Reynolds numbers
special techniques are required to ensure that the
solution does not oscillate. These techniques were
not necessary for the current low Reynolds number
case. The extent of the domain together with the
boundary conditions are shown in Fig. 4. The fluid
is air with its physical constants taken at 300 K. A
parabolic velocity profile was assumed at the inlet.

The problem was analysed both by FESTAL
and PHOENICS (Parabolic, Hyperbolic, and
Elliptic Numerical Integration Code Séries [15]).

The computational grid for both cases are shown
in Fig. 5. The mesh was chosen so that the results
were grid independent. FESTAL used 49 elements
and the grid for PHOENICS consisted of 30 X 40

reattachment

0-05m
01m ‘
stagnation
0-1m 2:0m

L + -~

Fig. 4. Laminar flow over backward facing step with parabolic
inlet velocity.

Fig. 5. Computational grid used by (a) FESTAL—49 elements,
(b) PHOENICS—30 X 45 cells.

cells. The Reynolds number, based on the average
velocity at the inlet and the step height, is 100. The
computations were terminated when the difference
between two successive iterations fell below 5%
throughout the domain.

Figure 6 shows the vector plot of velocity. As can
be seen the predicted flow patterns are similar and
they both show that the stagnation point is about
1.5 X step height downstream of the step. Also the
reattachment point is 3 X step height downstream
of the step. Closer inspection of the numerical
values in the recirculation region reveals that
FESTAL slightly overestimates the velocity magni-
tude there.
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Fig. 6. Velocity field up to the reattachment zone, (a) FESTAL,
(b) PHOENICS.

The pressure fields are different as shown in
Fig. 7. FESTAL predicts a more volatile fluctua-
tion in pressure field near the stagnation point. This
analysis was performed on a Digital VAX-8550
machine. PHOENICS took 156 cycles and 1864
CPU seconds and FESTAL took 26 cycles and
1065 CPU seconds.

Square cavity

The second example is that of a laminar natural
convection in a square cavity as shown in Fig. 8.
This problem was analysed for a range of Rayleigh
numbers and the results are compared with the
benchmark exercise [16]. The flow is considered to
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L))\ R equations (la to 1d) were solved simultaneously
and solutions were considered to have converged
m when the difference between two successive itera-

tions became less than 5% throughout the flow
domain. The computations were started with zero

initial conditions for all variables in all three cases.

Figure 9 shows the computational grid employed

for the case of Ra= 10° with 20 X 20 elements.

/ The grid is typical of the type of meshing employed

for this analysis. Finer grid lines are used near the
side walls in order to obtain accurate temperature
predictions there. The relative widths of the
Fig. 7. Pressure field up to the reattachment zone, (a) FESTAL, elemems in the first 6 columns on eaGh side Qf the
(b) PHOENICS. cavity are 1:3:5:7:10. The computational grid for
Ra=10° and 10* consisted of 12X 12 and
16 X 16 elements respectively. The graphical

dT/dy =0
Y T
Cold wall Hotwall
T=Tc | T=Th |-
9y
W
" ST/dy =0
1

X

Fig. 8. Natural convection in a square cavity.

be incompressible. Bousinesque approximation is
employed to account for buoyancy forces due to
variations in temperature, so that:

F,=0 and F,=pgBAT 7
The analysis was carried out non-dimensionally for Fig. 9. Typical computational grid for natural convection in
the Ra numbers of 10°, 10* and 10°. The governing square cavity, Ra = 10°, 20 X 20 elements.
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Festal for Thermal Analysis 147

representation of the results for the two cases of
Ra=10° and 10° are shown in the following
figures. Figure 10 shows the vectorial representa-
tion of the computed flow field. Streamline plots
for the flow fields are shown in Fig. 11. The
recirculation region exists at the centre of the cavity
for Ra= 103, whereas for Ra = 10° two distinct
circulation regions are apparent. Figure 12 shows
the contour plot of the pressure fields. The iso-
therms for the two cases are shown in Fig. 13.
Figure 14 shows the heat flux vectors in the cavity.
Table 1 presents the numerical comparisons of
selected variables at key locations within the
domain with those of the benchmark [16]. The
values are in very good agreement with the bench-
mark results considering the coarseness of the

g
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computational grid used for this analysis. Figure 15
shows the variation of the Nusselt number along
the hot wall for the range of Ra numbers con-
sidered. This case was analysed on a Digital VAX-
8550 machine. For Ra = 10, solution converged
to within 5% in all variables after 43 cycles and
2408 CPU seconds. At Ra = 10 76 cycles took
7566 CPU seconds to reach convergence, and for
Ra = 10°, 112 cycles took 17422 CPU seconds to
yield the final results.

CONCLUSIONS

FESTAL is a viable finite element package for
laminar fluid flow and heat transfer analysis. The

Fig. 12. Pressure field, (a) Ra = 10°, (b) Ra= 10°.
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Fig. 14. Heat flux, (a) Ra = 107 (b) Ra = 10°.

Rayleigh No. grid can be generated automatically with minimum
7.0 4 1000 effort. Curved sided regions are easily handled with
: © 30000 no extra effort. Each region can be sub-divided into

6.0 o 100000

eight or four noded elements with user specified

" lengths and widths. Essential and natural boundary
240 conditions can be specified readily. Boundary
PP conditions may be imposed on the domain, in a
region, along a side of a region or at any nodes

20 within the domain. The data input stage may be
100 B both interactive and/or in batch mode. Also at this
R T R G Y T S stage, checks are performed on the input data in
y/D order to minimize the possibility of initiating an

€rroneous run.
Fig. 15. Nusselt number variation along the hot wall. Two cases of laminar isothermal flow over a
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Table 1. Comparison of predicted results with those of the benchmark exercise'®

Ra = 10° Ra=10* Ra=10°
benchmark present work benchmark preent work benchmark present work
¥ mid 1.174 1.174 5.071 5.072 9.111 9.135
¥ max 1.174 1.174 5.071 5.072 9.612 9.724
X,y 0.5,0.5 0.5,0.5 0.5,0.5 0.5,0.5 0.285,0.601 0.290,0.600
U max 3.649 3.630 16.178 16.126 34.730 43.518
y 0813 0.950 0.823 0.813 0.855 0.847
V max 3.697 3.649 19.617 19.598 68.59 68.22
X 0.178 0.153 0.119 0.112 0.066 0.053
Nu avrg 1.118 1.118 2.243 2.244 4519 4.561
Nu max 1.505 1.506 3,528 3,522 7.717 7.719
y 0.092 0.100 0.143 0.156 0.081 0.075
Nu min 0.692 0.691 0.586 0.584 0.729 0.727
x 1.0 1.0 10.0 1.0 1.0 1.0

backward facing step and natural convection in a
square cavity were considered. The results for the
backward facing step compared well with those
obtained from PHOENICS. The flow fields are
shown to be similar. In both cases positions of the
stagnation point and the reattachment point are
predicted to occur at similar distances downstream
of the step. The computational times for FESTAL
and PHOENICS indicated a faster convergence to
the final solution by FESTAL.

The natural convection analysis demonstrated
the accuracy of FESTAL in determining the flow
field variables for the Rayleigh number range of

number range but became excssive at Ra= 10°.
This is attributed to the fact that for all cases the
computations started with zero initial conditions.
FESTAL has the facility to compute derived
quantities such as stream-function and flux which
are important for visualizing the flow and energy
fields. The post-processor is easy to use. Pictorial
representation of the computational mesh and
results are possible interactively once in the post-
processing mode. The program is capable of
further development by improving the user friendly
input phase, optimizing the solution procedures,
and producing comprehensive graphical repres-

10° to 10°. The results are in very good agreement entation of results.
with the benchmark results [16], where much finer
grids were employed. The twin recirculation
regions for Ra = 10° are accurately predicted. The
Nusselt number variations along the hot and the
cold walls are also computed accurately to within
less than 1% of the benchmark solution. The

computation times were reasonable in the low Ra

Acknowledgements—The work was carried out in the Depart-
ment of Mechanical Engineering using computer facilities
provided by the Polytechnic’s Computing Services. One of the
authors (F. Shemirani) was supported by a Research Assistant-
ship awarded by the Polytechnic Research Committee which is
gratefully acknowledged.

REFERENCES

. H. Schlichting, Boundary-layer Theory, 6th edn, McGraw-Hill (1968).
. S. H. Crandall, Engineering Analysis, McGraw-Hill (1956).
. O. C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill (1971).
. R. L.Sani, P. M. Gresho, R. L. Lee and D. F. Griffiths, The cause and cure (!) of the spurious pressure
generated by certain F.E.M. solutions of the incompressible Navier-Stokes equations: Part 1, Int. J.
Num. Meth. Fluids, 1 (1), (1981).
5. B. M. Irons, A frontal solution program for finite element analysis. Int. J. Num. Meth. Engng, 2(1),
5-32 (1970).
6. C.Taylor and T. G. Hughes, Finite Element Programming of the Navier-Stokes Equations , Pineridge
Press (1981).
7. K. Jambunathan and F. Shemirani, FIESTA, an educational interactive finite element package for
heat transfer analysis, /nt. J. Appl. Engng. Ed, 6(3), 349-360 (1990).
8. G. E.Schneider, G. D. Raithby and M. M. Yovanovich, Finite element solution procedure for solving
the incompressible Navier-Stokes equations using equal order variable interpolation, Num. Heat
Trans. 1,433-451 (1978).
9. R.J. Schnipke and J. G. Rice, Examination of a new finite element applied to convection heat
transfer, FE in Analysis & Design, 1,227-239 (1985).
10. J. G. Rice and R.J. Schnipke, An equal order velocity-pressure formulation that does not exhibit
spurious pressure modes, Comp. Meth. App. Mech. Engng, 58, 135-149 (1986).

11. T.J.R. Hughes, L. P. Franca and M. Balestera, A new finite element formulation for computational
fluid dynamics II—Beyond SUPG, Comp. Meth. App. Mech. Engng, 54, 341-355 (1986).

12. T.J.R. Hughes and M. Mallet, A new finite element formulation for computational fluid dynamics

W -




150 K. Jambunathan, F. Shemirani and B. L. Button

III—The generalised streamline operator for multidimensional advective-diffusive systems, Comp.
Meth. App. Mech. Engng, 58, 305-328 (1986).

13. T.J.R. Hughes, L. P. Franca and M. Balestera, A new finite element formulation for computational
fluid dynamics V—Circumventing The Babuska—Brezzi condition: A stable Petrov-Galerkin
formulation of the Stokes problem accommodating equal-order interpolations, Comp. Meth. App.
Mech. Engng, 59, 85-99 (1986).

14. R.J. Schnipke and J. G. Rice, A finite element method for free and forced convection heat transfer,
Int. J. Num. Meth. Engng, 24, 117-128 (1987).

15. D. B. Spalding, A general purpose computer program for multidimensional one and two phase flows,
Math. Comput. Simul. 23,267-278 (1981).

16. S.De Vahl Davis and I. P. Jones, Natural convection in a square cavity: A comparison exercise, /nt. J.
Num. Meth. Fluids, 3,227-248 (1983).




