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An Iterative Method in One-dimensional

Compressible Flows*
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Nonlinear equations in one-dimensional compressible flow are commonly solved by the Newton-
Raphson method. However, this method is potentially unstable. An iterative method is presented
with guaranteed convergence properties.

INTRODUCTION

ONE-DIMENSIONAL compressible flow is an
elective course for mechanical engineering seniors.
The course covers isentropic flow, normal shocks,
oblique shocks, convergent-divergent nozzle flow,
flow with friction, flow with heat transfer, expan-
sion waves, and two-dimensional method of char-
acteristics. Solutions to these flows can be
computed with a microcomputer.

In a compressible flow, properties are expressed
as a nonlinear algebraic function of the Mach
number. It is often necessary to solve an equation
for the Mach number. A popular method of
solution is the Newton-Raphson method. Unfor-
tunately this method may fail to converge if the
slope of the function is very small near the root.
(Indeed, some programs merely throw up their
hands in despair when Newton-Raphson iteration
fails and return an incorrect answer with no warn-
ing message.) The purpose of this paper is to
suggest an iterative method for finding the Mach
number in a one-dimensional flow.

ITERATIVE METHOD

Let’s consider an iterative method for some of
the equations in one-dimensional compressible
flow. In isentropic flow we have

(r+1)/(2y=2)
A 1 2 ~]

A* Mly+1

We know ahead of time whether the solution is
subsonic (M < 1) or supersonic (M > 1) by
considering the physical conditions of the problem.
If the solution is subsonic, we may rearrange the
equation to obtain
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Taking this equation as the basis for an iterative

method, we define
2 = (y+1)/(2y=2)
|:y +1 2 Mf):l CE)

For a given specific heat ratio y, area ratio A/A * =
(local cross-sectional area)/(critical cross-sectional
area), and initial value 0 < M ;< 1, the values M, con-
verge to a solution of the original equation: The
right-hand side is a contraction; in particular, its
derivativeislessthan A%A <1forO0<M:<1.

Conversely, if a supersonic solution to Equation
(1a) is desired, we can solve for the right-hand
instance of M?, taking that as the basis for an
iterative solution, starting with M, > 1. (Iteration
converges by the Lemma in the Appendix, using
[1,00] and the facts that A/A*>1and 1 <y <2)

Example 1: Isentropic flow with A/A * = 2.0 and
y = 1.40.

Subsonic solution: M = 0.30590.

A*

MI-H A

O+y

iteration initial 1 2 3 4 5 6
M 1.0000 .50000 .33496 .30927 .30628 .30595 .30591
M 0.0000 .28935 .30413 .30571 .30588 .30590 .30590

Supersonic solution: M = 2.1972.

iteration initial 1 2 3 4 5 9
M 1.0000 1.5999 1.9600 2.1120 2.1677 2.1871 2.1971
M 5.0000 2.8154 2.3821 2.2574 2.2174 2.2040 2.1973

For an adiabatic frictionalflow (Fanno line flow),

we have
4fLmax_1—M3+y+1 (y + 1)M? 5
D yM? 2y 24y —1)M® (2)

where f (the average Fanning friction factor), L,
(the length of duct required to change the Mach



An Iterative Method in One-dimensional Compressible Flows 65

number of the flow from M to 1) and D (the
hydraulic diameter) are given, and a value of M is
sought.

It was found that solving for the M? in the first
term gives a subsonic iterative equation and solving
for the M? term in the natural logarithm gives a
supersonic iterative equation. In case of subsonic
solution the initial guess of M must be greater than
zero due to the logarithmic term.

Example 2: Fanno line flow with 4fL/D = 0.40
and y = 1.40.

Subsonic solution: M = 0.62511.

iteration initial 1 2 3 5 9 14
M 1.0000 .80064 .70367 .65967 .63169 .62535 .62511
M 0.0001 20652 44121 .54629 .61039 .62459 62510

Supersonic solution: M = 2.3574.

iteration initial 1 2 3 5 7 10
M 1.0000 1.3453 1.7726 2.1018 2.3267 2.3542 2.3573
M 5.0000 2.9071 2.4475 2.3847 2.3601 2.3576 2.3574

For an isothermal friction flow:

4fL* 1 —yM?
D yM?

+inyM?  (3)

where L* is the length of duct required to change
the Mach number of the flow from M to the critical
Mach number. The critical Mach number is M, =
1/Jy or yM?> =1 and M, = 0.845154.1f yM*< 1,
we may solve for yM? in the first term, and if yM?2 >
1 we may solve for yM? in the logarithmic term.

Example 3: Isothermal frictional flow with 4L/
D =0.40 and y = 1.40.

Subsonic solution: M = 0.57257.

iteration initial 1 2 3 5 9 14
M 84515 71428 .64136 .60494 57950 .57288 .57258
M 00010 .19147 40431 49847 55746 .57191 .57256

Supersonic solution: M = 1.4288.

iteration initial 1 2 3 5 7 10
M 84516 1.0323 1.2173 1.3347 14162 1.4272 1.4287
M 5.0000 1.6778 1.4991 1.4519 1.4315 1.4291 1.4288

For heat transfer flow (Rayleigh line flow):

P y+1 2+(y—1)M3“y_"4
ps 1+yM? y+1 4)

where p, is the local stagnation pressure and p¥ s
the critical stagnation pressure for the flow at M =
1. This is similar to Equation (1a) and can be solved
for the M? in the first factor if M < 1 and for the M?>
term in the second factor if M > 1.

Example 4: Rayleigh line flow with Po/Po* =
1.20 and y = 1.40.

Subsonic solution: M = (0.29636.

iteration initial 1 2 3 5 9 14
M 1.0000 .84515 .70002 .57668 .41201 .30942 .29704
M 0.0001 20100 .24892 .27138 .28902 .29569 .29632

Supersonic solution: M = 1.6397.

iteration initial 1 2 3 5 9 14
M 1.0000 1.1493 1.2800 1.3853 1.5219 1.6178 1.6391
M 5.0000 2.9500 2.2986 2.0100 1.7750 1.6616 1.6422

For the Prandtl-Meyer flow we have

_ [ZFL ., [G=00F=1
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where v is the Prandtle-Meyer angle. A value for M
can be obtained by solving for M? in the first term.
Example 5: Prandtl-Meyer flow with v = 11
degrees and y = 1.40.
Solution: M = 1.4692.

iteration initial 1 2 3 5 9 16
M 1.0000 1.0183 1.0716 1.1508 1.3158 1.4508 1.4689
M 5.0000 2.0714 1.7066 1.5821 1.5000 1.4720 1.4692

Convergence for examples 2 through 5 can be
accelerated by the following method: Start with M,
= M, for flow of M > M, (or M;)= 0.0 for flow of M
< M,) and magnify the size of each step by a factor
of two or My, = M, + 2(f(M,) — M,).

Example 6: Repeat example 5 with step size
magnified by a factor of two.

Solution: M = 1.4692.

iteration initial 1 2 3 4 5 8

M 1.0000 1.0183 1.1025 1.2550 1.3917 1.4537 1.4692

One of the most complicated problems in one-
dimensional compressible flow is predicting the
location of a normal shock in a diverging section of
a converging-diverging nozzle. When the specific
heat ratio y, the ratio of the nozzle exit area to
throat area A /A,, and the ratio of the back pressure
to the inlet stagnation pressure p,/p,,, are given, the
flow is analyzed by assuming an isentropic flow
throughout the nozzle except across the normal
shock wave. To calculate the location of the normal
shock (or the cross-sectional area at which the
shock occurs), we may calculate the upstream
Mach number before the shock M, and then use
Equation (1a) to calculate the cross-sectional area
of the nozzle at which the shock occurs. Following
Olfe [1], we may express p,/p,, as
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where p, is the exit static pressure which is equal to
the back pressure for subsonic flow. At the nozzle
exit, p, is the downstream stagnation pressure and
AT and A7F are respectively the upstream and
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downstream critical cross-sectional area. Using the
isentropic relation [1,2]

) y—l y/(1-7)
— N PG 7
Po I: 2 ] )

and A/A7 by Equation (la) we can solve M?
directly using the quadratic formula. From the
calculated p/p,,, the stagnation pressure ratio
across the shock wave p,,/p,; can be calculated.
The stagnation pressure ratio is expressed in terms
of the upstream Mach number M [1,2] by

po_At_[ o+ymi 17777
2+ (y - DM} g

[ '}’+1 ]1'(7—1)
2yMi—(y—1)

To determine the cross-sectional area A , at which
the normal shock occurs we must solve Equation
(8) for M| and use Equation (1a) to solve for A ,.

To use the Newton-Raphson iterative method,
we manipulate Equation (8) into the form f(M) =
0, and make an initial guess for M. We use this
guess as the basis for the recurrence

o S
b s i

which is applied repeatedly to obtain the root. This
method gives very rapid convergence to the root
when f"(M,) is very large, as shown in Fig. 1 for p,/
Pn =09, A/A, =2 and y = 14 (ie. py,/py; =
0.9655) with an initial guess of M, = 2. However
this method is very unstable and may fail to con-
verge when f’(M,) is nearly equal to zero, for
example, when 1 <M, < 1.2 in Fig. 1. In Fig. 1, we
also see that for M, > 2.5 the value of the iterate
M, ., may become negative. It was also found that
for 1 < M;<1.09and 3.17 < M, < 3.32 the iterate
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Fig. 1. Distribution of p ,/p,, = 0.9655 and y = 1.4.

M;,, becomes so small that the second factor in
Equation (8) becomes negative. This is particularly
unfortunate, since an initial guess of 1 < M,< 1.09
is not unreasonable.

A solution to Equation (8) can be obtained by a
simple iterative method: Letting N = M? and
solving for the M in the second factor, we obtain
the recurrence

ot
Po it sk
= N = | ——
Niwr= I ) I:pn:] 2y(2/N)+y— 1)
: (10)
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When we find a fixed point of the recurrence, its
square root is the desired solution. We observe that
f satisfies the conditions of the Lemma, and there-
fore iteration will converge. (With [0,00] and the
factthat 1 <y <2)

The rate of convergence depends on the particu-
lar value of y, which determines the shape of the
curve f: As y — 1, the rate of convergence slows.
For commonly-used values of y, however, the rate
of convergence has been found to be reasonable.

Example 7: Normal shock in a convergent-
divergent nozzle with p,/p,, = 0.90, A/A, and y =
1.40 (i.e. po/p oy = 0.96546).

Solution: Upstream Mach number M, = 1.3695.

iteration initial 1 2 3 5 21 100
M 1.0000 1.0061 1.0121 1.0183 1.0307 1.3527 1.3651
M 5.0000 29012 2.3881 2.1370 1.8791 1.4643 1.3701

Convergence can be acclerated by the following
method: Start with M; = 1.01 and magnify the size
of each step by a factor of ten until the direction of
the step changes, after which the usual iteration
method is used. Put more explicitly, we let M,,, =
M, + 10(f(M;) — M;) until f(M,) < M;; after which we
justsuse M, =M, + 2(f(M,) — M,).

Example 8: Do example 7 with step size magni-
fied by 10.

Solution: Upstream Mach number M, = 1.3695.

iteration initial 1 2 3 S 10 15

M 1.0100 1.1613 1.0778 1.1433 1.2676 1.3672 1.3695

APPENDIX

Lemma. Let f(M) be a continuous function defined on [a,b] (with
a,b possibly infinite) satisfying the following conditions.

1. f(M)<OL<f(M)forasM<b

2. f(a)> aandf(b)< b (if b = o, then we need f(M)< M for
M sufficiently large; similarly if a = —c),
Then iteration will yield a fixed point.
Proof. It is immediate that a fixed point M* exists and is unique.
Observe thatif M* < ¢, then M* < f(c) < ¢, so if our initial guess
is too high, then (M,) is a strictly decreasing sequence bounded
from below (by M*) and hence has a limit. But the limit is a fixed
point since f is continuous. An analogous argument holds if our
initial guess is too low.
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subject to the initial conditions

y(()) =), y(1>(()) =1, y(l)(()) =—2, y(3)(()) = 3,

The exact solution can be shown to be xe™*. Using
the notation in the paper this becomes
Dy+D;y+D,y+ye'(Diy+y)=1+

27 x~2)

Consequently,

Dy=1%2¢*(x=2)= D,y — D,y—ye(Dpid
y)-

In terms of state variables this becomes
Dy=1+2e"(x-2)-y,-y,-ys €(ys+yJ).

The right-hand side of this equation constructs the
function f (see equation 7 and also line 120 of the
program). Table 2 shows the computer results for
two different increments. These results are directly
compared to the exact values.

CONCLUSIONS

Direct solution of higher-order differential equa-
tions can be very difficult and time consuming.
Converting these equations to a system of first-
order equations may be accomplished by introduc-
ing the state variables. However, this technique

Table 2. Results for the example problem

X y (h=.05) y (h=.025) y (Exact)
0 0 0 0

.05 04535 04643 04756
1 08638 08838 09048
15 12339 12619 32911
i .15666 16014 16375
25 .18648 19025 .19470
.3 21308 21760 22225
3 23670 24162 24664
4 25973 .26283 26813
45 27590 28144 28693
S 29187 29765 30327
k. 30568 31167 31732
6 .31750 .32368 32929
.65 .32750 .33386 .33933
g .33583 34236 .34761
a5 .34266 .34936 35427
8 .34811 35499 .35946
85 35233 .35941 .36330
9 35545 36275 36591
.95 .35760 36513 36740
1 .35889 36669 .36788

requires a workable computer program. These
topics have been addressed in this paper. The
proposed program is extremely compact and is
easy to use. It offers the educator a powerful tool
and can be integrated into a wide variety of areas
such as dynamics and control.
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