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Techniques suitable for the analysis of a wide variety of generalized one-dimensional
compressible flows are examined and assimilated. Examples of such flows involving situations
with and without sonic points are analyzed, presented, and discussed. A BASIC computer
program listing illustrating details of the implementation of the required techniques is provided in
the Appendix. Usage of and justification for the generalized one-dimensional compressible flow
analysis in an academic environment are discussed.

NOMENCLATURE

Cross-sectional area

Term defined by Eq. (14)
Term defined by Eq. (14)
Specific heat at constant pressure
Diameter

Fanning friction factor
Defined in Eq. (1b)
Runge-Kutta terms defined by Eq. (3b)
Mach number

Mass flow rate

Pressure

Entropy

Temperature

Spatial coordinate

Ratio of specific heats
Integration step size

Density

Definedas 1 + (y — 1)/2 M?
ubscripts

Back pressure

Stagnation condition
Stagnation condition at x = 0
Upstream station
Downstream station
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INTRODUCTION

IN A previous article [1], Hodge explored the
content and software for a microcomputer-based
introductory compressible flow course. Two soft-
ware elements, COMPQ and COMPINT, were
introduced in that paper. COMPQ basically
replaced the extensive tables and graphs usually
associated with one-dimensional simple flows, and
COMPINT represented an elementary imple-
mentation for generalized one-dimensional flows.

* Paper accepted 30 May 1990.
+ B. K. Hodge is Professor.

56

Simple flows are flows with only a single driving
potential such as area change or friction or heat
transfer or mass addition. In compressible flow the
first three of these are usually called isentropic
flow, Fanno flow, and Rayleigh flow, respectively.
Generalized flows are flows with two or more of the
driving potentials present. COMPINT is limited to
flow situations that do not possess sonic points, a
fairly stringent limitation.

The purpose of this paper is to present a more
complete assimilation of generalized one-
dimensional flow analysis techniques suitable for
use in an instructional setting. Although Shapiro [2]
first examined the generalized one-dimensional
flow analysis technique, few compressible flow
textbooks have fully exploited the procedure.
Beans [3] in a technical paper and Zucrow and
Hoffman [4] and Saad [5] do contain discussions of
it, but particulars are relatively scant. In this paper,
details of the techniques required are delineated
and then illustrated using several examples. A
listing of program COMPINT?2, which can solve a
wide variety of generalized compressible flow
problems, is provided. The generalized procedure
can be an attractive educational tool in the current
personal computer computational environment.

THE GENERALIZED ONE-DIMENSIONAL
COMPRESSIBLE FLOW TECHNIQUE

Many compressible flow textbooks, Zucrow and
Hoffman [4] and Saad [5], for example, derive a
system of differential equations describing the
steady, one-dimensional flow of a calorically
perfect gas in a duct with area change, friction,
stagnation temperature change, and mass addition
(or rejection) as the driving potentials. The differ-
ential equation with Mach number as the depend-
ent variable and the spatial coordinate x as the
independent variable is, from Saad
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This expression is valid for mass injection per-
pendicular to the duct axis and with friction as the
only drag force. If the variations of the four driving
potentials with respect to x are known, then Eq. (1)
can be integrated to yield the Mach number distri-
bution as a function of x. The equation is well
behaved and possesses no hidden problems except
in the neighborhood of sonic point locations.
Virtually any accurate numerical procedure can be
used to integrate Equation (1). Because of its
simplicity and accuracy, a fourth-order Runge-
Kutta numerical procedure was used in this paper
to integrate the differential equation. Given a
differential equation of the functional form

dM
i f&r.M) (2)

with conditions at x known, the solution at location
x+ Ax is

M(x+Ax)=M(x)+% (ky+2k,+2k;+ k)

(3a)
where
ky=flx,y, M(x)]
k,=flx +Ax/2 Y, M(x)+ Axk,/2] 3b
ky=flx + Ax/2,y, M(x)+ Axky/2] (3)
ky=flx +Ax, y, M(x)+ Axk,)

Additional details on Runge-Kutta procedures are
provided in many numerical analysis textbooks;
Conte and de Boor [6] is typical.

Normal shock waves are handled in one-
dimensional generalized flow problems by con-
tinuing the integration procedure to the shock wave
location. At the shock wave location, properties
across the shock wave are calculated using the
expressions that relate conditions across a normal
shock wave. For completeness, the so-called jump
conditions’ are repeated here as
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where subscript 1 represents upstream and sub-
script 2 downstream conditions. After crossing the
normal shock wave, the Runge-Kutta procedure is
continued for the remainder of the x-range.

The physical properties are obtained from the
integral relations, which can be derived [2,4,5] by
considering various property ratios between two x-
stations and the known driving potential variations.
The integral relations are
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Zucrow and Hoffman [4] provide an outline for
obtaining numerical solutions of generalized flows
that possess no sonic point locations. A version of
their four-step procedure is:

(1) Establish the intial conditions and develop
models for the driving potentials present.
These models must be functions of the
independent variable x.

(2) Use the Runge-Kutta method to integrate
the differential equation from x to x + Ax.

(3) Use the integral relations to obtain the
physical properties at x + Ax.

(4) Repeat steps 2 and 3 over the x-range of
interest.

Sonic points are of concern since a sonic point
location is a singular point of the generalized
differential equation relating Mach number and the
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driving potentials. The denominator of Eq. (1)
becomes unbounded in the neighbourhood of M =
1, the sonic point. Thus, attempts to integrate
through the sonic point using the Runge-Kutta
procedure would result in ‘overflows’ and/or x-
step size dependencies of the Mach numbers.
Beans [3] and Zucrow and Hoffman [4] suggest
procedures available to transit the sonic point
location. We shall follow the technique proposed
by Beans.
Equation (1) can be written as

2

(I—MZ)dM

& mVGEyM) (6

Evaluation at the sonic point leads to
0=G(x,y,1) (7

since 1 is not zero at the sonic point. The sonic
point is thus the root of Equation (7). For a non-
simple flow, the sonic point need not be located at
the minimum area. At the sonic point, Beans
suggested that

dm?
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is indeterminate since both the numerator and the
denominator vanish. The value of dM?/dx at the
sonic point can then be evaluated by using
I'Hospital’s rule. Thus

dm? y+1 . dG(x,y,M)/dx
—— | = lim = (9)
dx |[M=1 2 . —2MdM/dx
since M = M(x).
The term dG(x,y,M)/dx becomes
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Equation (9) can be stated as
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This expression is a quadratic equation in terms of
dM/dx at the sonic point. The solution for Eq. (12)
is double valued; the negative value corresponding
to decreasing Mach numbers, and the positive
value corresponding to increasing Mach numbers.

Hence
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The procedure of Beans [3] is simple: in the neigh-
borhood of the sonic point, the limiting value of
dM/dx from Eq. (13) is used instead of Equation
(1). Singular behavior is thus avoided, and the
solution proceeds smoothly through the sonic
point. Since the value of dM/dx at the sonic point
is double valued, the question of which root to use
is pertinent. To achieve M = 1 at the sonic point,
the positive root must be used when the flow is
subsonic upstream of the sonic point. Supersonic
flow downstream of the sonic point will be attained
if the positive root, dM/dx > 0, is used downstream
of the sonic point. If the negative root, dM/dx <0,
is used downstream of the sonic point, then the flow
will be decelerated subsonically downstream of the
sonic point.

The other remaining problem for non-simple
duct flows possessing sonic points is that the
entrance Mach number is unknown. This situation
does not arise in simple area change flow since the
sonic point is known (at the minimum area loca-
tion) and since the area ratio determines the
entrance Mach number. For the case of non-simple
flow with a sonic point, the Mach number is one at
the sonic point location, but the entrance Mach
number is unknown. The Runge-Kutta method is
used to integrate backwards, in the negative x-
direction, from the sonic point to the duct entrance.
The Mach number at the duct entrance can thus be
established. Once the entrance Mach number is
known, the Runge-Kutta method is integrated
forward from the entrance, x = 0, and the pro-
perties evaluated using the integral relations. For
both integrations, forwards and backwards, the
appropriate limiting value of dM/dx from Eq. (13)
is used in the neighborhood of the sonic point.

The procedure for applying the generalized one-
dimensional flow analysis technique to ducts with
sonic points then becomes:
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1. Model the driving potentials as functions of
X\

. Locate the sonic point, x = XSP, using Eq.
(7).

3. Evaluate dM/dx, DMDXMAX, at the sonic
point using Eq. (13).

4. Starting at the sonic location (x = XSP),
integrate backwards to establish the entrance
Mach number, XMI. Use the positive root of
Eq. (13) for this integration.

5. Starting at the entrance (x = 0), integrate
forward to find the distributions of Mach
number and properties. Upstream of the
sonic point, the positive root of Eq. (13) is
used: downstream the positive/negative is
used for supersonic/subsonic flow.

o

GENERALIZED ONE-DIMENSIONAL FLOW
EXAMPLES

The methodology is implemented in computer
program COMPINT2; a listing is provided in
Appendix A. The program is structured so that
only the function definitions for the driving
potentials and the initial conditions need to be
altered for different problems. REM statements
indicate the major steps in the program’s logic. The
procedures presented in the previous section can
be better understood by considering examples.

Example 1

Air enters a duct with an initial Mach number of
2.0 and stagnation conditions of 1000 K and
200 kPa. The 2 m long duct is composed of a
constant diameter section for 1 m followed by a
‘sine-wave’ shaped diameter distribution for 1 m.
The initial diameter is 0.2 m, and the final diameter
is 0.4 m. The friction factor is taken to be 0.005.
The stagnation temperature varies in a linear
fashion from 1000 K at the entrance to 600 K at
the exit. The mass flow rate at the exitis 1.15 times
the entrance mass flow rate. A normal shock wave
is located 1.5 m from the entrance. The duct shape
is sketched in Fig. 1(a). Determine the distributions
of Mach number and static and stagnation pressure
and temperature for this arrangement.

Solution

The problem possesses the driving potentials of
area change, friction, heat rejection, and mass
addition. Additionally, a shock wave location is
specified and the duct shape involves two different
diameter functions. With a supersonic entrance
Mach number specified, a sonic point is not
anticipated. Generalized problems with no sonic
point locations and known inlet conditions can be
easily solved using the procedure of Zucrow and
Hoffman [4]. The driving potentials become:
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Fig. 1. Example Problem 1.
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The procedure of Zucrow and Hoffman as imple-
mented in COMPINT2 was used to obtain the
solution for this problem. The resulting Mach
number, temperature, and pressure distributions
are shown in Figs 1(b), 1(c), and 1(d). This is a
straightforward example since no sonic point is
present.

The next example illustrates details of the
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techniques for handling generalized flows with
sonic points.

Example 2

A converging-diverging nozzle with the hyper-
bolic diameter distribution, where D(x) and x are
in feet,

D(x)=J1+0.25(x—3)’

is connected to a reservoir with stagnation condi-
tions of 100 psia and 1000 R. The nozzle exhausts
into a variable back pressure arrangement. Deter-
mine the nozzle behavior with respect to back
pressure if the stagnation temperature increases by
20% and the mass flow rate increases by 10%. The
increase in both stagnation temperature and mass
flow rate is linear with respect to x, the nozzle axis
coordinate. The friction factor is 0.01.

0<x<10 (19)

Solution

If area change were the only driving potential
present this would be the classical simple flow
nozzle problem. However, with friction, heat
addition, and mass addition specified, the problem
is clearly non-simple and requires numerical
integration of Eq. (1) with the appropriate driving
potentials. The nozzle geometry is sketched in
Fig. 2(a). For the non-simple flow specified by the
problem statement, neither the sonic point location
nor the inlet Mach number is known. The solution
procedure must then follow that delineated above
for geometries with a sonic point location. The
program COMPINT2, as listed in Appendix A,
was used to determine the back pressures cor-
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Fig. 2. Example Problem 2 with all driving potentials.

responding to various positions of the normal
shock wave location. The driving potentials are:

Area Change
gl Mg
Adx " 21 +025(-3)] e
Heat Addition
Lt 3
T, dx 50+ x (1)
Friction
4 4
D [1+025(x=3)
Mass Addition
1 dr 1

mdx 100+4x

The initial conditions for the program executions
are

f=0.01 Ax =0.25 xMax = 10.0
xshock =20, 10,5,7.5
L) 1 Ty 1 24
P, - (24)

Since the minimum area occurred at x = 3, the
initial guess for the sonic point location iteration
was taken as x = 3.

With the aforementioned coded into COM-
PINT2, the various back pressures required for
different normal shock wave locations were found.
The back pressure required for the shock to stand
in the nozzle exit plane was generated by requiring
a shock to be positioned at x = 10, using the
variable XSHOCK. A shock wave will be posi-
tioned at the nozzle exit for a back pressure of 9.34
psia. The program output for the normal shock to
stand in the exit plane is provided in Table 1. In the
output, the pressures and temperatures are non-
dimensionalized with the initial reservoir (stagna-
tion) values of pressure and temperature. For the
conditions of the problem,. the back pressure
required for shock-free flow is 1.14 psia.

The requirement for a normal shock wave of
vanishing strength (M, = 1) to stand exactly at the
sonic point, x = 3.148, cannot be precisely attained
because of the finite value of Ax used in the integra-
tion. The conditions are approximated by using the
positive value of dM/dx upstream of sonic point
and the negative value of dM/dx downstream of
the sonic point. A normal shock wave standing at
the sonic point corresponds to the maximum back
pressure for the nozzle to be choked. For this
problem, the maximum back pressure is 91.2 psia.

The behavior of the nozzle for the non-simple
flow is thus established. The back pressures,
expressed in psia, for the various ranges are

912< P, <100
9.34< P, <912

subsonic throughout
shock in nozzle
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Table 1. COMPINT?2 output from Example 2 with shock wave
at nozzle exit.

EXAWPLE 2 - SHOCK AT NOZZLE EXIT

INPUT PARAMETERS:  GAMMA F 0x
1.400 0.010 0.250
SONIC POINT INFORMAT ION: XsP DMDXAX
3.148 0.512
MACH NUMBER AT ENTRANCE ESTABLISHED TO BE 0.1638
| X MACH PSTAG PSTATIC TSTAG TSTATIC
1 0.0000 0.163%6 1.00000 0.98150  1.00000  0.99468
2 0.2500 0.18574 0.99967 0.97580  1.00500  0.99811
3 0.5000 0.21197 0.99922 0.96842 1.01000  1.00100
4 0.7500 0.24312 0.99883 0.95839 1.01500 1.00314
5 1.0000 0.28019 0.99784 0.94488  1.02000 1.00423
6 1.2500 0.32438 0.99674 0.92663 1.02500  1.00388
7 1.5000 0.37683 0.99524 0.90228 1.03000 1.00154
8 1.7500 0.43928 0.99316 0.86989  1.03500  0.99654

21 5.0000 1.80515 0.77738 0.11508 1

2 5.2500 1.99335 0.74453 0.09525 1.10500  0.61407
B 5.5000 2.08517 0.71115 0.07958  1.11000  0.58371
4 5.7500 2.162%2 0.67761 0.06716  1.11500  0.57604
% 6.0000 2.23302 0.64428 0.0572 1.12000 0.56076
% 6.2500 2.29597 0.61146  0.04321 1.12500 0.54763
r 6.5000 2.35225 0.57941 0.04270  1.13000  0.53841
2 6.7500  2.40237 0.54832 0.03737 1.13500 0.52686
2 7.0000 2.44684 0.51833 0.03296 1.14000 0.51879
0 7.2500 2.48811 0.48956 0.02928 1.14500 0.51204
31 7.5000 2.52083 0.46208 0.02619  1.15000  0.50645
2 7.7500  2.55081  0.43589  0.02357 1.15500 0.50188
k<) 8.0000 2.57704 0.41104 0.02135 1.16000  0.49823
34 8.2500 2.59966 0.38752 0.01943  1.16500  0.43540
3 8.5000 2.61901 0.36531 0.01778 1.17000  0.43329
k 8.7500 2.63538 0.34436 0.01634 1.17500 0.49183
37 9.0000 2.64903 0.32465 0.01508 1.18000  0.49096
38 9.2500 2.68023 0.30612 0.01388  1.18500  0.49061
3 9.5000 2.66913  0.28871 0.01300 1.19000  0.49074
40 9.7500 2.67613  0.27238  0.01214  1.19500  0.49130
4 10.0000 2.68123 0.25707 0.01136  1.20000 0.49225

g

0.49712  0.11081 0.08342 1.20000 1,14348

shock at nozzle exit 2, =934
oblique shock at exit 1.14< P, <9.34
shock-free flow P,=1.14

outside expansion wave P, < 1.14

These are indicated in Fig. 2(b), which was gener-
ated from the outputs of the program executions.
One of the most significant effects in this problem is
the degradation of the stagnation pressure.
Figure 2(c) shows the pressure distribution for
supersonic shock-free nozzle flow for this problem.
The loss of stagnation pressure is pronounced. An
important point to note is that once the nozzle
behavior is characterized and the generalized
analysis available, the added complexity of
multiple driving potentials can be readily handled.

For this same nozzle but with simple area change

only, the corresponding back pressure ranges, in
psia, are

subsonic throughout
shock in nozzle

99.2< P, <100
9.99< P, < 99.2

shock at nozzle exit P, =9.99
oblique shock at exit 048< P,<9.99
shock-free flow P,=048

outside expansion wave P, < 0.48

The driving potentials other than area change thus
have a noticeable effect on the nozzle behavior with
respect to back pressure.

The simple area change results were obtained by
using the generalized technique with only the single
driving potential defined. The pressure distribu-
tions plots presented in Fig. 3 were generated using
the output from COMPINT2. Use of the isentropic
and normal shock relations for this simple flow
yields the same results to within the accuracy of the
numerical integration, about three significant
digits. Although appearing quite similar, differ-
ences do exist between Figs 2 and 3. An important
conclusion reached by comparing the figures is the
dominance of area change in this problem. Even
though the original problem statement involved
significant friction, heat addition, and mass addi-
tion, the relative agreement between Figs 2 and 3
demonstrate that area change is by far the most
important driving potential. An ancillary con-
clusion is that simple area change is a good model
for many flows in which friction, heat addition (or
rejection), and mass addition (or reduction) are of
secondary importance.
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Fig. 3. Example Problem 2 with area change only.

CONCLUSIONS

The techniques developed and the examples
illustrated herein provide an easily adapted exten-
sion to most compressible flow courses. The
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one-dimensional generalized analysis is straight-
forward to apply and permits the student to read-
ily investigate non-simple flows. At Mississippi
State University (MSU) the generalized flow con-
cept has been used for the analysis of non-simple
flows, as an educational ‘what-if’ tool to permit
students to quantitatively see the importance of
various effects (area change, friction, heat addi-
tion, and mass flow rate change), and as an adjunct
to COMPQ which allows students to obtain the
distributions of Mach number and properties for
given simple flow situations.

When compressible flow is taught with the
content and order as suggested by Hodge [1], little

additional time is required to pursue the develop-
ment of techniques for generalized one-
dimensional compressible flow. At MSU an
additional three (3) lecture periods (50 minutes
each) are allocated to generalized flow and a major
homework assignment, using COMPTIN2 as the
basis, is required. Student response has been
favorable for both the sequence of compressible
flow coverage suggested by Hodge and the pre-
sentation of generalized flow techniques. Just the
notion that they can handle more than one driving
potential, as for the simple flows, seems to inspire
confidence in the utility of one-dimensional gas
dynamics.
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APPENDIX A

The listing of COMPINT 2 is presented in Fig. A-1. As the
listing shows, the program is structured about function
definitions. Three groups of function definitions are used: (1)
the driving potentials for a specific problem, (2) the differential
equation used for all problems, and (3) useful expressions used
for all problems. The usual expressions relating static and
stagnation temperatures and pressures are used in the order
needed to compute the initial values of all properties. If an initial
stagnation condition is taken as one, then the program output
for that property is in the form of the ratio of the local property
value divided by the initial stagnation property value at the
entrance.

The Runge-Kutta procedure and the integral equations
calculations are identified with REM statements. The differ-
ential equation function definition is used with the arguments of
the differential equation function being other previously defined
function definitions. Since the driving potentials and other
problem-specific functions can be defined for each problem, no
coding changes are required in the Runge-Kutta procedure for
different problems. More complex problems might require
some changes to the program, but the overall logic would need
little alteration.

If individuals desiring copies of COMPINT2 and COMPQ
will send me a formatted 5.25 2S-2D MS DOS diskette, I will
send copies of the software elements. The address is P.O
Drawer ME, Mississippi State, MS 39762 U.S.A.

Fig. A-1. Listing of COMPINT2.

10 REM
20 REM INFLUENCE COEFFICIENT EXAMPLE WITH SONIC LOCATION
30 REM DEVELOPED FOR USE IN INTRODUCTORY COMPRESSIBLE FLOW BY:

40 REM MECHANICAL ENGINEERING DEPARTMENT
50 REM MISSISSIPPI STATE UNIVERSITY

60 REM MISSISSIPPI STATE, MS 39762

T0 REM

80 PI = 3.14150254

90 REM

100 REM DRIVING POTENTIAL FUNCTION DEFINITIONS
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110 REM

120 DEF FN AREADP(A) = (A - 3!)/(2!1%(1! + .25*%(A - 3!)*2))
130 DEF FN HEATOP(A) = 1!/(50! + A)

140 DEF FN DIAI(A) = SQR(1! + .25%(A - 3!)*2)

150 DEF FN MASSOP(A) = 1!/(100! + A) : DEF FN FRICOP(A,F) =
AIF/SIR(1! + .25%(A - 31)%2)

160 DEF FN TSTAG(A) = 1! + .02°A

170 DEF FN AREA(A) = .25°PI*(1! + .25%(A - 3!)*2)

180 DEF FN MDOT(A) = 1! + .01%A

180 DEF FN G(DPA,DPF,DPH,DPM,A, CM,GAM) = 2!*(-DPA + .S*GAMSCM*CMDPF +
551! + GAMCMOM)*0PH + (1! + GAMPON®CM)*DPN)

200 REM

210 REM DIFFERENTIAL EQUATION DEFINITION

220 REM

230 DEF FN FM(AET AT, DPA,DPF,DPH,DPM, A, CM,GAM) = CMPAET/AMT*(-DPA +
STGANOMCONIPF + .5%(1! + GAMPONOM)*DPH + (1! + GAMSCMUON)*DPN)
240 REM

250 REM USEFUL FUNCTION DEFINITIONS

260 REM

270 DEF FN NT(CM) = 1! - OMCM

280 DEF FN ET(CM) = 1! + .5%(GAM = 1!)*O¢OM

290 REM

300 REM INITIAL PARAMETERS

310 REM

30 F = .01

330 JMAX = 10! : XSHOCK = 10! : IS =0

340 GAM = 1.4

350 PEX = GAW/(GAM - 1)

360 OX = .25 : DXSAVE = DX

370 REM

380 REM BRANCH TO SUBROUTINES TO LOCATE SONIC POINT AND EVALUATE dW/dX
ATM=1

390 REM

400 GOSUB 1250 : REM LOCATION OF SONIC POINT (XSP DETERMINED)
410 GOSUB 1000 : REM EVALUATION OF dM/dX AT M = 1

420 REM

430 REM BACKWARDS INTEGRATION TO ESTABLISH ENTRANCE MACH NUMBER
440 REM

450 X = XSP : DX = ~XSAVE : XM =1! : [ =0

460 GOSUB 2000 : REM XMI DETERMINED

470 REM

480 REM INITIAL CONDITIONS OUTPUT

430 REM

500 XMI = XM : DX = DXSAVE : [ = 1
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510 TSI = FN TSTAG(O! /PN ET(OMI)

520 PSTAGI = 11: TSTAGI = FN TSTAG(0!)
530 PSI = PSTAGL/(FN ET(XI)*PEX)

540 INPUT “ENTER THE TITLE®;TTS

S50 s

560 PRINT: PRINT TT$: PRINT

S70 PRINT “INPUT PARAMETERS: GAMA F ox*

580 PRINT * *; USING * 0.8 ";GAMF,DX
500 PRINT “SONIC POINT INFORMATION: Xsp OMIOX "
600 PRINT * “ USING ° H.04
“;XSP, DMMAX

610 PRINT “MACH MUMBER AT ENTRANCE ESTABLISHED TO BE *; USING *
0800

620 PRINT: PRINT * I X MACH PSTAG  PSTATIC
TSTAG  TSTATIC®: PRINT

IS$ = STR$(I)

G40 PRINT * IS8:* °; USING * 0.4 °;X.0%;

650 PRINT USING * . 88888 *;PSTAGI PSI, TSTAGI, TSI

660 REN END OF STATION QUTPUT

670 REN

630 REM FORMARD RUNGE-KUTTA INTEGRATION AND PROPERTY EVALUATION CALL
690 REM

700 X = 0! : X = DXSAVE

710 GOSUB 2000

0 B0

1000 REN

1010 REM EVALUATION OF DMDIOWX FOR SONIC POINT EVALUATION

1020 REN

1030 XSPP = XSP + .001 : XSPM = XSP - 001

1040 DGOX = (FN G(FN AREADP(XSPP),FN FRICOP(XSPP,F), N HEATDP(XSPP),FN
MASSOP(XSPP), XSPP, 11,GAM) - FN G(FN AREADP(XSPM), FN FRICDP(XSPM,F),FN
HEATOP(XSPH), FN MASSDP(XSPH), XSPM, 11, GAM))/(XSPP - XSPH)

1050 CTERM = (GAM + 11)*0GI/3!

1080 BTERM = (GAM + 11)°(2!°GAW/B!)*(PN FRICOP(XSP,F) + FN HEATDP(XSP)
+ 219N MASSIP(XSP))

1070 DMDX1 = - 5°BTERM + .5°SOR(BTERMPSTERM - 41°CTERM) : DMDI2 = -
SSTERM - SQR(BTERWPBTERM - 41°CTER)

1080 OMDXMAX. = DMIXI : REM DMDOWX FOR SUPERSONIC FLON CHOSEN

1080 RETURN

1250 REN

1250 REM NEWTON-RAPHSON .TO LOCATE SONIC POINT

1270 REN

1280 XINT = 3!

1290 YPLUS = XINT 4 .001 : YMIN = XINT - 001

1300 DGIX = (FN G(P AREADPQPLUS), PN FRICOPQ®PLUS, F), PN
HEATOP(XPLUS) , FN WASSOP(XPLUS), XPLUS, 11, GAM) - FN G(FN AREADPXMIN), FN
FRICOP(XMIN,F), PN HEATOPQOIIN), FN MASSDPOMMIN),XMIN, 1!, GAN))/(XPLUS -
YMIN)

1310 XNE = XINT = FN G(FN AREADP(XINT), N FRICDP(XINT, F),FN
HEATOP(XINT), FN MASSDP(XINT), XINT, 1!, GAM)/DGIX

1320 IF ABSOOEW - XINT) < .0001 THEN GOTO 1340

1330 XINT = YNEX : GOTO 1290

1340 XSP = XINT

1350 RETURN

1500 REM

1510 REM SHOCX MAVE JUMP CONDITIONS

1520 REM

150 IS = 1

1540 M0 = Y

1550 Y0 = STR(OOMOM + 20/(GA = 11))/(21"GAV/(GAN - 11)"0R0 - 11))
1560 PS = PS®(21*GAW/(GAM + 11)*M0™0 ~ (GAM - 11)/(GAM + 11))

1570 TS = TS*FN ET(MO)/PN ET(0M)

1580 PSTAG = PS*FN ET(I0M)*PEX

1580 DELS = LOG(TS/TSI) - (GAM - 1!)*LOG(PS/PST)/GAN
100 PRINT * NORMAL SHOCK MAVE ENCOUNTERED"
1610 PRINT * “USING * HO.00 X0

1620 PRINT USING * 988888 °;PSTAG,PS, PN TSTAG(X),TS
1630 RETURN

2000 REN

2010 REM RUNGE-KUTTA INTEGRATION ROUTINE

2020 REM

2000 1=1+1:MONC = .05

2040 REM FIRST RUNGE-KUTTA PASS

2050 IF ABSOM - 11) < MSONIC THEN GOTO 2070

2080 K1 = FN FMCFN ETQOH), PN MT(0M), PN mwm FN FRICOP(X,F),FN
HEATOP(X), FN MASSDP(X), X, XM, GAM) :

2070 Ki = DMOOMAX mxrx>xsvmx1-m
2080 REM SECOND RUNGE-KUTTA PASS

2000 XA = X + 5%

2100 YO = Y0 + .5°0X*K1

2110 IF ABSQOW - 11) < MSONIC THEN GOTO 2130

2120 K2 = FN FMCFN ETQOM),FN NT(OOW),FN AREADP(XA),FN FRICDP(XA,F),FN
HEATOP(XA), FN MASSOP(XA), XA, XOA, GAN) : GOTO 2150

2130 K2 = OMDOOWX : REM IF X > XSP THEN K2 = DMDD2
2140 REM THIRD RUNGE-KUTTA PASS

2150 YU = )N + .5°TH"K2

2160 IF ABS(MA - 11) < MSONIC THEN GOTO 2180

2170 K3 = FN FMCFN ETQOM),FN NT(OOW),FN AREADP(XA),FN FRICOP(XA,F),FN
HEATDP(XA), FN MASSOP(XA),XA,XMA,GAN) : GOTO 2200

2180 K3 = OMDIOWX : REM IF X > XSP THEN K3 = DMDX2
2190 REM FOURTH RONGE-KUTTA PASS

2200 XA = X + DX

2210 M = XM + DX*%3

2220 1F ABSOOW - 11) < MSONIC THEN GOTO 2240

K4 = FN FMCFN ETOOW),FN MTOOW),FN AREADP(XA),FN FRICOP(XA,F), FN
HEATDP(XA),FN MASSOP(XA), XA, XA, GAN) : GOTO 2280

2240 K4 = DMDDAX : REM IF X > XSP THEN K4 = DMDX2
2250 REM MACH NUMBER AT X + OX

2280 X = XN + DX*(K1 + 21%(K2 + K3) + Kd)/B!

270X = XA

2280 IF DX < 0! THEN GOTO 2440

2290 RN

2300 REM PROPERTY CALCULATIONS

2310 REM

2320 T20T1 = FN TSTAG(X)*FN ETOMI)/(FN TSTAG(0!)*FN ET(XN))
2330 TS = T20TI*TSI

2340 TSTAG = FN TSTAG(X)

2350 P20P1 = FN MDOT(X)*FN AREA(O! )*YMI *SQR(T20T1)/(FN MDOT(0!)*FN
AREA(X)*04)

2360 PS = P20P1°PSI

2370 PSTAG = P20P1°PSTAGI*(FN ET(ON)/FN ET(0MI))*PEX
2380 15$ = STRY(I)

2390 PRINT * *;IS$;" *; USING * #H.4H *;X,);
2400 PRINT USING *  §.88888 °;PSTAG,PS, TSTAG, TS

2410 REM CHECX FOR SHOCK WAVE LOCATION

2420 IF X > (XSHOCK - .5°0X) AND IS = O THEN GOSUB 1500
2430 REM CHECK ON END OF INTEGRATION SEQUENCES
2440 IF DX < 0! THEN GOTO 2470

2450 IF (X + .001) < YMAX THEN GOTO 2030

2460 RETURN

2470 IF ABS(DX) > X THEN IX = =X

2480 IF X > .0001 THEN GOTO 2030

2490 RETURN




