Int. J. Appl. Engng Ed. Vol. 7, No. 1, pp. 40-50, 1991
Printed in Great Britain.

0742-0269/91 $3.00+0.00
© 1991 Tempus Publications.

Microcomputers in the Mechanical
Engineering Microprocessor Laboratory at

Georgia Tech—Part IT*

C.UMEAGUKWUf{
M. CHOUCHANE#

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia

30332, U.S.A.

This paper describes a microprocessor laboratory in mechanical engineering and the correspond-
ing set of students’ final group projects. The chip used in this course is the MC68HC11 micro-
controller made by Motorola. The course teaches students in the 68HCII microprocessor
instruction set and assembly language programming, the fundamentals of each of the many
microcontroller subsystems, and the basics of some electronic components used to interface the
microcontroller with external devices. In addition, students gain hands-on experience and the
opportunity to apply what they have been taught by completing five experiments and final group
project (three students per group). Five examples of students’ group projects are presented in this
paper. The experiments used for teaching a microprocessor course were presented in Part I.

INTRODUCTION

THE majority of engineering schools have incor-
porated microcomputer and microprocessor
related courses into their curriculum, and have
developed the corresponding microprocessor
laboratories [1-9]. Most existing microprocessor
laboratories are still using 8-bit microprocessors,
such as the 8085 [9], or the 6502 [10]; however,
newly developed laboratories are beginning to use
more advanced 16-bit microprocessors, such as
the MC68000 and the Intel 8086 and 286, as well
as more advanced microprocessor components
[12-14].

This paper describes the theory and design of the
microprocessor laboratory and a set of five pro-
jects. The laboratory is designed to be taken
concurrently with a three credit quarter hour
senior elective microprocessor applications
course. The prerequisites for this course are: (1) an
introductory course oOn mMmiCroCOMProcessors
which covers Boolean algebra, assembly language
programming, d.c. motors and digital arithmetic;
and (2) control.

The present setup of the lab has evolved from an
earlier microprocessor course based on MC6801.
The experience gained there was invaluable in
setting up this laboratory. In this earlier micro-
processor course, the microcontroller used was the
earlier generation of MC6800 series, MC6801
[15-17]. The chip was purchased by itself and

* Paper accepted 31 May 1990.
1 Charles Umeagukwu is Assistant Professor.
$Mnaouar Chouchane is graduate Research Assistant.

40

distributed to the students. The students were then
required to install the chip on a breadboard and
perform all the wiring necessary for the chip to be
operational. The minimum system for the 6801
required a clock generator, a serial communication
interface, reset logic, and a host terminal. The
versatile Commodore VIC 20 computer was used
as the host terminal for communication with the
6801’s on-chip software monitor. The monitor
program enabled the user to develop software on
the 6801.

The earlier laboratory setup proved to have
many disadvantages. The breadboard wiring
required by the student to create a minimum
system for the 6801 was fragile, blew fuses and
damaged chips too frequently. The minimum
system utilized only the on-chip memory of the
6801 which proved to be too small for anything but
the most modest of programs. Expansion of the
system memory required the addition of a separate
memory chip. Lastly, the VIC 20 setup provided
only the means to communicate with the 6801’s on-
chip monitor program. The setup was unable to
provide the capability to write assembly language
programs on the VIC 20, assemble the programs
into machine language and download into 6801
memory. The shortcomings made the process of
software development slow and hindered the
implementation of the overall objective of the
MICTOProcessor course.

A new microprocessor lab setup was sought
which addressed the shortcomings of the previous
hardware arrangement. The intention was to avoid
the students themselves having to perform the
basic wiring necessary to operate the microcon-
troller. This ruled out the purchase of individual

Microprocessor Laboratory at Georgia Tech 41

chips. What was needed was a ready-to-go micro-
controller system contained on a single circuit
board and requiring a minimum of setup to
operate. We also wanted a system where students
could move easily between the stages of writing,
assembling and debugging microcontroller pro-
grams. Motorola sells a low-cost single board
68HC11-based system for microcontroller soft-
ware development called the M68HC11EVB [18-
21);

The EVB board is relatively cheap. It is a
versatile product which contains 8K of RAM for
program storage, ROM-based monitor software to
facilitate software development, and a built-in RS-
232C communications interface. The communica-
tions allow the board to be connected to an
industry standard IBM-PC or compatible host
computer. The hefty 8K or RAM provides more
than enough storage for user programs. Add to this
system text editing software, 68HC11 cross-
assembler software, and communications software
for the PC and the result is a powerful stand-alone
68HC11 development system. With such a system,
software can be written in assembly language on
the PC, assembled into a machine language pro-
gram, and downloaded into the RAM on the EVB
board via the communications interface where it
can then be debugged or executed via the monitor
software. Motorola offers 68HCI11 cross-
assembler ‘software and communications software
to purchasers of the EVB board free of charge.
However, the authors were able to acquire a
student-written program to form the software
component of our system. The software is capable
of handling the PC to EVB communications,
assembly of user programs, and downloading of
resulting machine language files to EVB memory
allin one integrated package. The software package
fully meets our objective of allowing the students
easy movement between the stages of writing,
assembling and debugging microcontroller pro-
grams.

Selection of the Motorola EVB board allowed us
to contruct a relatively low-cost software develop-
ment system for use in the Microprocessor Labor-
atory. The complete hardware and software system
allows us to realize the capabilities that were
unavailable with the previous setup. This paper
demonstrates the philosophy of this laboratory
through the description of five students’ final
projects.

DESCRIPTION OF THE FINAL PROJECTS

Students are required to demonstrate an in-
depth understanding of both the theoretical and
hands-on aspects of the microprocessor course by
completing a final group project. They are split into
groups of three students during the first week of
class. They are asked to use the knowledge gained
in the class lectures and the laboratory exercises to
come up with their own unique project. The project

is due during the last week of classes, and it is
accompanied with formal group presentations.
Each group is required to present a working
project. Of course, there is initial informal pre-
sentation by each group to the instructor who
advises the group whether the project is too
ambitious or too frivolous. The description of five
of these projects, including the title of the projects,
interface procedures, and pertinent drawings are
presented below.

Watchdog Security System

The objective of this project was to use a
Motorola MC68HC11 as a controller for an alarm
system. A program for the 68HC11 was written to
monitor the prototype alarm circuitry built in the
laboratory as shown in Fig. 1. The program flow
chart is shown in Fig. 2. The program will allow an
individual to input a security code, enter and exit
delays to arm the system; monitor doors, windows
and other sensors; and indicate the location where
security was breached.

This watchdog security system consisted of a
monitor attached to the microcontroller. Sensors
were strategically placed throughout the circuitries
that simulated doorways, windows, hallways,
stairways and storage rooms as shown in Fig. 3.
Anytime there was a disturbance, the microcon-
troller set off an alarm while the source and
location of the disturbance was displayed on the
monitor.

Regardless of the sensor type (magnetic, vibra-
tion or sonar), its output must be high when there is
no disturbance. When there is a disturbance, its
output goes low and the buzzer sounds. The
advantage of this configuration is that if the sensor

510 0 AR B e A FEN

(TYP) s7| s6| S5/ S4

[
|
$3| s2 s:l
]

Logic Circuit

AO| All A2

PCO| PC1|PC2

MC6BHC11A8 EVB

Fig. 1. Prototype alarm circuitry.

42 C. Umeagukwu and M. Chouchane

Initialize Entrance

Delay Timing Loop

L Turn Alarm Off —l

Set Pins CO, C1, C2
To Off And Clear
The Rest

I

Set Memory Loc. To
Indicate That System
Is Disarmed

l

Wait For Code
From Screen

Incorrect
See If Code
Is Correct

Correct

Print "Invalid
Security Code
To Screen

L Unenable TOF Flag '

|

See If Code
Was For Armed
Or Disarmed
System

Was Armed

Was Armed Print "Alarm

Is Disarmed”

Clears Security Code
Mem. Loc.

l

Print "System Is
Armed”

Turn Alarm Off

Clear Security
Code Mem. Loc.

Entered

Set Mem. Loc
To Indicate
System Is

Armed

See If First
Digit Off Security
Is Entered

Not Entered

See If There is
A Disturbance

No Disturbance

Disturbance

ee If The Not Door

Disturbance
Is The Door

L.D. Sensor

Door

I Enable TOF lnlerrupl—lﬂ—llurn On Alarml

Set Memory Loc.
That Indicates System
Is Armed

Fig. 2. Watchdog security system program flow chart.

line is cut, the signal is no longer going through,
which indicates a disturbance or break-in.

Software description . At the start of the program
the entrance delay timing loop is initialized and sets
the alarm to the ‘off’ position. Pins 0, 1, and 2 of
port C are set for input and the remaining pins (3-
7) are grounded to keep them always clear from

s |
Window 2 (Sensor 3) s

/o

/
Sonar —~
(Sensor 7)

Window 1
(Sensor 2)

Window 3
(Sensor 4)

Typical Floorplan

Sonar i
(Sensor 6)
Electric Eye
(Sensor 5)
Storage /
Room F J
¢,
/

/ Stair
/ Well

-4

T
Door (Sensor 1)

Fig. 3. Typical floor plan and sensor locations.

any uncontrollable disturbance. Next, port C is set
to indicate that the controller is initially disarmed.
The controller now waits for the security code to
be input into the computer. If the wrong code is
entered the computer prints on the screen
‘INVALID SECURITY CODE". The correct code
causes the timer overflow flag to clear and checks if
coded entry was for arming or disarming the
system. When the coded entry is for disarming, the
software clears the security code memory locations
while printing on the screen ‘SYSTEM IS DIS-
ARMED’ and jumps back to the start of the
program and waits for arming security code. For
arming, the program first checks to see if perimeter
is secure, i.e. all doors and windows closed. If not
secure ‘PERIMETER NOT SECURE' is printed
on the screen and arming sequence begins over
again. When the system is secure an exit delay
begins. During the delay routine the program
continually checks for sensor trips and the alarm
will sound for any disturbances except the door
opening. If the door is still open when the exit delay
runs out, the program goes into extended exit
delay. Once again any disturbances other than the
door will set off the alarm. Upon the door closing
the extended or normal exit delay, the computer
will print ‘SYSTEM IS ARMED’ on the screen.
When the program is armed, it is continuously
checking to see if there is either a disturbance, or if
first digit of the security code is entered. The
security code is 1-2-3-4, so the program tests the
keyboard to see if a ‘1’ has been entered. If other
than a ‘1’ is entered, it ignores the entry and stays in
its loop. However, if a ‘1’ is entered, the program
jumps to the INPUTS SECURITY CODE FROM
KEYBOARD’ section of the program. The pro-
gram will jump back to the ‘SYSTEM IS ARMED’
section if the rest of the security code is entered
incorrectly. The program reads the code as a
disarming code and shuts the alarm system off. If a
disturbance in sensors occurs then the program
checks whether the door was opened. If it was not

Microprocessor Laboratory at Georgia Tech 43

opened the system prints to the screen the sensor
number and turns on the alarm. When the alarm is
set the program waits for the correct disarming
code. If the door was opened, the timer overflow
interrupt mask is enabled which begins the entering
delay in the interrupt vector. The interrupt vector
first clears the timer overflow flag and begins
incrementing a counter memory location while
checking whether or not maximum count was
reached. While the interrupt vector is counting, the
individual who opened the door enters the security
code to turn off the alarm. If the person successfully
enters the code before the time runs out (15 sec.),
the control system shuts off and ‘SYSTEM IS
DISARMED’ is printed on the screen. If the person
unsuccessfully enters the security code the alarm
will sound and the interrupt will be disabled. Once
the alarm is sounded, the program waits for the
correct security code to turn the alarm off. When
the system is disarmed, the program goes to the
beginning and begins the process over again.

Automated Positioning and Capping of Bottles
This project is about the application of a micro-
processor controlled stepper motor for the auto-
mated positioning and capping of a bottle. The
microprocesser used in this project is MC6801.
Specifically, a robot places the bottles on a round
table that is rotated by the stepper motor. In this
project a human hand was used to simulate the
robot manipulator. Bottles, on a rotating table are
sequentially positioned under a mechanism which
will cap them. An angular interval of 30° separates
each bottle. However, in this case the capping
mechanism cannot be activated until the next bottle
to be capped has been properly positioned. For the
project, one MC6801 was used to simulate the
capping mechanism while another was used to
control the positioning of the table, and hence the
bottle to be capped. The capping 6801 must wait
until the positioning stepper motor has success-
fully positioned the bottle under the capping
mechanism. A ready state is signified by a high level
on a line running from an output pin on motor
6801 to an input pin on capping 6801. When the
ready signal is received, the capping 6801 enters a
3-second delay signifying the capping of the bottle.
At the conclusion of the delay, an interrupt signal is
generated by creating a low level on a line running
from an output pin of capping 6801 to the IRQ2
interrupt pin on the 6801 that controls the motor.
This interrupt causes this 6801 to enter a service
routine which sets the ready line to low level,
signifying that it is busy, and begins sending the
required stepping sequence to the stepper motor to
step it 30° thereby positioning the next bottle to be
capped. The low level on the ready line tells the
capping 6801 that the bottle is being positioned.
When the 6801 has stepped the motor the required
30° it sets the ready line high again signifying that
the bottle is now ready to be capped. Reception of
the ready signal by the capping 6801 tells it to begin
capping the bottle and the process begins all over

again. The circuit that was designed for this project
is shown in Fig. 4.

A stepper motor is a d.c. machine which has four
field windings wound in such a way as to create a
number of stable poles evenly spaced around the
circumference of the outer motor housing. Simul-
taneously, energizing the four windings in a specific
way results in the rotation of the rotor so as to align
with the next stable pole. The stepper motor used in
the project has 48 poles, so the smallest step angle
is 360°/48 =7.5°. Continuous rotation of the
stepper motor shaft is achieved by energizing/
deenergizing all four motor windings following a
sequential pattern which is given in the product
literature. For the stepper motor used in the
project, the sequence for clockwise rotation is as
follows:

Motor
Winding 1 2 '3 4
Condition: off on off on clockwise
on off off on
on off on off
off on on off
off on off on

Software description. This program has two
major parts; a start-up routine and an interrupt
service routine that turns the motor when
requested.

The start up routine, executed only once when
the program is first started, takes care of configur-
ing the 6801 for its task. Ports 1 and 4 are con-
figured for all output. Port 1 is configured for
output because the chip will be communicating
with the controlling 6801 via pin P17. Port 4 is
configured for output so that port 4 can be used as
an address bus for the added RAM. In extended
non-multiplexed mode port 4 is the address bus but
the initialization still must take place. The next task
that is performed is the relocation of the interrupt
vector table. The address at FE:FF normally points
to the interrupt vector table that is located in ROM.
By changing this address and making it point to the
interrupt vector table near the end of the program,
the IRQ1 interrupt will now jump to $100 and
perform the motor service routine. For safety, the
interrupts are masked while this address is being
changed. After the vector table has been changed, a
message is placed on the screen by jumping to
subroutine PRINT. Although this code is only used
once, a subroutine had to be used because of the
limited amount of memory in page zero for user
programs. Therefore, by using the subroutine, the
statements that perform the screen output could be
located in external RAM.

After the start up routine, the program falls
through into a polling loop where the program
waits for an interrupt to occur. Because of the way
the hardware is configured, only an IRQ1 is able to
be generated. The IRQ1 will be sent by the
controlling 6801 whenever the motor needs to be
turned. The first thing that occurs in the loop is line
P17 is set high without altering the rest of port 1.

44 C. Umeagukwu and M. Chouchane
8.2 % TR
T | __ _MCM6B10P_ _ _ | ueoim |
l_ ‘L BEEzaugz8z53z32s9slE sBRE
27pF GND 27pF GND E
R oy i Bk [~y]
:.’Eﬁ% - T g >
4.7K0 o 05 L K0 —] Revet s
———— % — 4 D3
v L e o LRV
BN WASER :: S smp> . :; S 3
@© @© D7
8 5100 8 -~
- Al
= [si00 m o= om
(5100 " R: -
AS
A8
’—J Pe s100 A7
By Vo A Ay Voo
%
b 1
BEERANB22523IYIIPL LRRP
____________ .
MCM6810P .
L_(8o-1rr) |
B o e ra i s o
il | STEPPER MOTOR//DIODES |
5100 s100 TIP110 | |
¥ s | —K— |
gg i gg b \ 1 VY }
4 oo I I
TIP110 : :
™Sa 1 I e l |
| |
) I |
TIP110 I I
N ! A :
s s I |
2 §§ 5 gg 5 TIP110 I |
b <] |
- - e : o }
P |

Fig. 4. Circuit diagram for automated positioning and capping of bottles.

This had to be done because if the codes that are
sent to the stepper motor are changed, it is possible
that the motor will only oscillate instead of turning.
Line P17 serves as a ready line which tells the
controlling 6801 that the motor controller is ready
to turn the motor. After line P17 is set high,
maskable interrupts are enabled and then the
processor waits for an interrupt. When the proces-
sor executes the wait for interrupt command, the
machine state is dumped to the stack and then
monitors the interrupt lines until an interrupt
occurs. When an interrupt does occur, the pro-
cessor jumps to location FFF8:FFF9 to obtain an
interrupt vector. However, this vector points to a
subroutine in the LiI’bug monitor that uses the
vector table pointed to by FE:FF to find the desired
interrupt handling routine. The use of two interrupt
vector tables, one at FFF1:FFFF and another
which is pointed to be FE:FF, is done so that if the
user does not wish to reset interrupt vectors, then
the 6801 is already configured with one in the
Li’bug monitor ROM. This happens because on
REST the address at FE:FF is FFCS, the starting
address of the ROM vector table. Once the inter-
rupt service routine is through it branches back to
the beginning of the polling loop.

The other part of the program is the interrupt

service routine which is used to turn the stepper
motor whenever an IRQ1 is received. This routine
starts at address $100 and is pointed to in the new
interrupt vector table. The first thing to occur is
interrupts are masked so that it is not possible to
receive an interrupt during interrupt servicing. This
is needed because it is possible to overflow the
stack and crash the program if many interrupts
were received simultaneously. The next step that
occurs is pin P17 is set low without altering the rest
of port 1. Once again, this had to be done to prevent
possible motor oscillation. The next part of the
program is a loop which will send four codes to the
motor to make it turn 30°. The loop is performed
by decrementing a counter variable and the motor
codes are accessed by indexed addressing. The
codes are changed by decrementing the x register,
thus moving up one location in the motor code
table. After a code is obtained, it is sent to port 1. A
delay routine is used to send codes to the motor at
the rate of 200 pulses per second. Once the four
codes have been sent to the motor, the interrupt
routine is finished and returns to the polling loop.

Elevator Control
The object of this project is to control an elevator
(or a similar mobile vehicle) with two inexpensive

Microprocessor Laboratory at Georgia Tech 45

d.c. motors. The first motor drives the elevator in
the upward direction, while the other drives the
elevator in the downward direction. The final goal
is to make the elevator respond to passengers’
requests in a logical manner and also to provide a
smooth ride. The Motorola MC68HC11 is used as
the core of the elevator control system. It is
programmed to drive the elevator motors so that
the elevator performs its expected function and
behaves according to the required specifications.
Figure 5 shows a simplified layout of the elevator
driving system. An emergency braking system is
included in order to keep the elevator under
control when both piniono are unloaded. This
corresponds to a failure of one or two of the driving
gears to transform the action of the motor elevator.
The elevator is then slowly driven to the ground
floor. Two d.c. motors are used in this project butin
an actual application, a larger reversible motor will
have to be chosen. The choice of the motors
depends mainly on the maximum load of the
elevator and the required speed. Figure 6 shows the
circuitry of the interface board. Two of these
circuits were built; one circuit for each 6811.

Description of the Circuitry. In addition to the
circuitry used to control the motors, the wiring
circuitry includes two light emitting diodes (LEDs)
for each floor of the building which uses the
elevator. Each floor has an LED inside the elevator
which is turned on when a trip to that floor is

gonk o L TIP1I2

AN A

|_—~Gear rack

SEE G

| —Pinion mounted
on a free wheel

3.1

Guide and
emergency Elevator
brake

|—Pinion mounted
gt 7,
P u= \‘j_ on a free wheel

¢
t_____.

Emergency brake is automatically
set when both pinions are unlocked

Fig. 5. Elevator driving diagram.

requested from inside the elevator. A second LED
is located at each floor near the elevator door, and
it is turned on whenever the elevator is called for
that floor. In addition, the requests generated from
a call to the elevator from one floor turns on the

O.luF INSI4
10082 22
Sl 4 2 *
votor s =
+
Opto -Isolator i 15080
Bat
+6V©
Input from 681
(PIA PAO)
IKQ
Gnd#
o— 4 9 7
MocC 78l 74514
S 2 14 8
Opto-Interrupter 510§ Schmitt
1008 Trigger
+5V
s (o]
to 6811
(PAZ)

Battery Ground is Separate from ALl Others!

Fig. 6. Circuit diagram for elevator control.

46 C. Umeagukwu and M. Chouchane

LED inside the elevator which corresponds to the
requested destination floor. This is useful for
controlling the elevator and can be a source of
information for the passengers inside the elevator
to inform them about the destination floors. Each
LED is reset to ‘off when the corresponding
request is fulfilled. Port C is specified as an output
port using the Data Direction Register for port C.
Again, this is not the only choice available. Other
ports on the microcontroller can play the same
role. Each LED is connected to a single pin of port
C. When more than 8 LEDs are needed, other
ports such as port B can be used. The keyboard is
used for entering input request. In Fig. 7 capital
letters A, B, . . . correspond to a request for a trip to
floor 1, 2, ... from inside the elevator. Numbers 1,
2, 3, ... correspond to a call to the elevator from
floor 1, 2, 3, ... When moving from one floor to
another, the elevator should provide a smooth ride.
Hence, the elevator should undergo three phases of
speed: (1) accelerate uniformly for a certain time,
(2) move with a uniform speed toward the destina-
tion floor leaving a given distance for deceleration
(3) Decelerate uniformly until the elevator reaches
a full stop which should correspond to the destina-
tion floor.

The acceleration of the motor is achieved by
increasing the on-time of the square wave voltage
fed to the motor at a chosen rate. In the uniform
speed, the on-time voltage is maintained constant.
In the deceleration mode, the on-time voltage of
the fixed period is decreased at a selected rate until
it reaches a zero on-time condition which causes
the motor to stop. Figure 7 shows examples of the
elevator speed versus a position for four different
trips. In this project, the time of acceleration is
chosen to correspond to a displacement of the
elevator for a half floor. The deceleration, also,
corresponds to a displacement of a half floor. The

time of acceleration and deceleration can be
modified for convenience. Similarly, the maximum
speed can be controlled as desired.

The project was completed for a three-story
elevator. This limitation was necessary in order to
validate the control method and to finish the
project in the limited time assigned for a class
project. The extension of the project to an elevator
serving any number of stories was kept in mind
during the writing of the control program. Hence,
we expect that the extension of the project, for
more than a three-story elevator, should be
accomplished with an addition of a limited amount
of code and without a major additional effort. Also,
the elevator is currently configured to respond first
to the lowest floor among the requested floors. This
is of course not the correct technique to control the
motion of an elevator, but this step was appropriate
for the early development of the system and the
limited time. Similarly, correcting this deficiency is
expected to present limited difficulty. The program
flow chart is shown in Fig. 8.

Automated Material Handling and Identification
System

Material handling operations are most com-
monly achieved by using conveyors, cranes, hoists
and industrial trucks. With an increased emphasis
on automation, Automated Guided Vehicles
(AGV), Automated Storage and Retrieval Syst-
gems (ASRS), Tote Stackers, Carousels, Miniloads
and Industrial Robots are also being used increas-
ingly nowadays. Transfer of materials on con-
veyors still continues to be the most popular form
of material handling in between these systems. This

INPUT
1. Call from the inside the elevator

2. Call from the building floors

Floor
4

3

2

Floor
El

3

2

Speed

A
B
C:
D

Fig. 7. Elevator speed versus position for four different trips.

: Floor 3 to Floor 2

: Floor 2 to Floor 3

Floor 4 to Floor 1

: Floor 1 to Floor 4

Is the
elevator currently
in use

Select a trip to the
closest requested floor

f
[Initiate a trip j
1

Accelerate the elevator

Continue the
trip with the
current speed

i

Request a trip to
the closest floor
where there is a
call to the elevator

——l Go with uniform speed—ih (i:lzewckinf};):t

L Decelerate the eleval.or]’._”—=

i

Set the floor reached
and open elevator door

Fig. 8. Program flow chart for elevator control.

Microprocessor Laboratory at Georgia Tech 47

method of transfer is most commonly seen on
assembly lines where hundreds of components are
continuously moved to the assembly points, get
assembled and continue further on to the next
assembly point as an assembled part. A similar
picture can also be seen in the receiving/shipping
sections where the incoming and outgoing goods,
in the form of packages, are lined up on conveyors.
With hundreds of components passing on these
lines in a haphazard manner, it is extremely
important to keep track of the types and the
number of components or packages on them.
Sophisticated and expensive vision systems are
being utilized by several companies to achieve this
function. Bar code readers are also extensively
used to identify the packages.

This project proposes a very simple approach to
achieve a fast and dependable status control of
materials. The cost of implementation is cut down
to a negligent minimum in contrast to the com-
plicated devices being presently employed. This
project will give the system the desired flexibility
that is important in today’s dynamic workplace.
The timer function of the Motorola’s MC68HC1 1
single chip microcontroller has been shown to
enable rapid and accurate counting of components
on assembly lines or packages on shipping/
receiving lines. In order to achieve counting and
classification of objects this method utilizes the
timer resource on the microcontroller. The objects
on a conveyor line can be detected by passing
through an optical gate as shown in Fig. 9. Each
object causes a rising and falling edge to occur
which can be captured by the input capture
function on the chip. Each capture gives informa-
tion about when the capture actually occurred and

-6V +6V
Sl
1500 oc1
['NWWV——O
10002 E >t j %
1.04 pF %
B 22K0
Power Optical
c Transistor lSOlgtor
(TIP110) (4n28) L
— vdd

\
1000 5100
Rt Conveyor
de A
Motor

Slotted Optical
Switch
(MC7811)

IC1

A=y

Schmitt
Trigger
1k0 (SN74LS14N)

AAAAA
VWWW

GND

i}

MC68HCI11

Fig. 9. Motor control circuit for automated material handling.

the difference in time can give the precise time for
which the object was in front of the sensor. Initially
an object of known length is passed in front of the
sensor for calibration which automatically takes
into account the speed at which the conveyor is
moving. Knowing the time difference for the cali-
brating object we can easily determine the length of
any object on the conveyor. This length is then
matched with the specified lengths of the objects in
the internal database. When a match is found the
object is classified under that particular type. This
project has 3 different types of objects in the
database which can be easily extended to include
many more.

In order to demonstrate the idea, a prototype of
the conveyor is fabricated with a transparent
plastic belt serving as the conveyor belt as shown in
Fig. 10. On the conveyor pieces of opaque tape are
fixed which represent objects on the conveyor. The
conveyor is driven using a d.c. motor which in turn
is driven by the program using pulse width
modulation (PWM). This involves applying a
square wave to the motor and by varying the period
of the wave, the average voltage applied to the
motor can be varied. The motor is driven using an
open loop control scheme. A closed loop control
scheme can also be easily implemented if deemed
necessary.

Description of the Circuitry. The motor control
circuit shown in Fig. 9 is composed of two circuits,
one to measure the width of the opaque strips and
the other to control the PWM signal entering the
motor.

The clear conveyor is passed through the optical
gate (switch) as shown in Fig. 10. Thus for every
object on the belt, a square pulse is generated as it
passes through the switch opening. The pulse is
made by filtering out the noise with the Schmitt
trigger. The Schmitt triggers cuts off all voltage
outside its operating band such that extraneous
rising and falling edges are eliminated. The signal is
then sent to the input capture pin and Port C of the
68HC11. The input signal is analyzed by the
assembly program which computes the length of
the strip based on the calibration strip.

The basic function of the output circuit is to
amplify the 5V PWM signal to 12V to drive the
motor. The output compare pin is attached to the
4N28 optical isolator to prevent feedback of any
current into the microcontroller. The output from
the optical isolator is amplified via the power
transistor which operates in the saturation region.
Thus, a small base voltage has the effect of creating

i clear plastic
. conveyer
opaque strips roller
/ r'd

S

Fig. 10. Experimental setup for prototype conveyor system.

48 C. Umeagukwu and M. Chouchane

a short circuit between the collector and emitter.
The result is that the circuit is closed and a voltage
is sent to the d.c. motor. The capacitor is included
to add damping to the system, while the diode
allows the capacitor to discharge during the off
time. :
This project gives an idea of the usefulness of th

microcontroller as a powerful tool for controlling
different devices. It provides a foundation as to
how the microcontroller can be efficiently used to
control all kinds of motors which are the drivers for
robots, automated material handling systems,
numerically controlled machine tools and a wide
variety of other applications. Another important
aspect of the microcontroller is, as the name
suggests, its small size and weight which enables it
to be incorporated into any device without requir-
ing much space. The high speed of the micro-
controller can also be efficiently used for certain
applications like counting of components on an
assembly line, packages on a conveyor etc. by
making use of the ideas gained from this lab.

An Electronic Traction Control System

An electronic traction control system was
developed which utilized the Motorola
MC68HC11 microprocessor and some other
components as shown in Fig. 11. This system
monitors the slip between a driving wheel and a
driven wheel and adjusts the torque of the driving
wheel to stop any slipping that may occur. The
system can be utilized wherever slip between two
contact surfaces is destructive.

Many situations exist where maximum accelera-
tion of a driven wheel by driving wheel is needed.

Wheel
Speed
Counters

Optical
Pickups

Tt
.

Dual
Schmitt
Trigger

8 Bit

Common

Bus
Input

Counters

w1 11111 — | [[1]]

Counter Resel

Throttle faTalalolalalnlelelel
Potentiometer

v+
MC68HC11

@ [S|=|s|aje sl e ieeeeeeee..))

Pulse Width
Modulation Line

JFET Transistor

\ ‘v_‘
U Opto~-Isolator

Fig. 11. Control circuitry for electronic traction control.

The upper limit of this acceleration is dependent on
the frictional force developed from the wheel to
wheel contact. This frictional force is dependent on
two factors: the normal force imposed on the
wheels as shown in Fig. 12, and the coefficient of
friction between the two surfaces. The normal
force on the wheels is dependent on how tightly the
wheels are pushed together. The coefficient of
friction is dependent on the properties of the
contact surfaces.

Driven Wheel

Driving Wheel

Normal Forces

Fig. 12. Normal force on the driving and driven wheels.

To accelerate a wheel by another wheel, several
force transmissions must occur. First, an external
device must produce a torque, usually by some type
of motor, and this torque must be transmitted to the
driving wheel via a drive shaft or some other
equivalent device. Second, the torque of the driving
wheel must be transmitted from the surface of the
driving wheel to the surface of the driven wheel.
The driven wheel is then accelerated by this force.

To maximize the acceleration of the driven
wheel, two routes can be pursued. The normal
force can be increased or the frictional force can be
increased. Increasing the normal force has been the
practice since it is easily accomplished. The dis-
advantage of this route is that the load on the wheel
bearings is increased which decreases the life of the
bearings. Another route would be to increase the
coefficient of friction between the two surfaces.
The disadvantages of this method are that more
heat is developed and more noise is produced by
the rougher surfaces.

A third route, the method of the electronic
traction control, is to take advantage of the differ-
ences in the coefficients of static and dynamic
frictions. The electronic traction control uses
feedback control to adjust the torque exerted by
the driving wheel so that the system is constantly
fluctuating between the slip and the no slip con-
ditions. By remaining in this region, maximum
acceleration is achieved. With the other systems
that do not use feedback control, the torque of the
driving wheel must be set at an arbitrary value. If
this value is set too high, then the acceleration is
dependent on the lower coefficient of dynamic
friction, and heat is generated between the sliding
surfaces. If the torque is set too low, then the
driving wheel is not taking full advantage of the
higher coefficient of static friction. And if by
chance the torque is set at the highest possible
torque with no slip, any kind of disturbance will
throw the system into a slip condition.

Microprocessor Laboratory at Georgia Tech 49

Description of the Circuitry. The general hard-
ware for the simulation of an actual system consists
of five components: a Motorola MC68HC11 chip
on an EVB board, a motor driving a small light
plastic wheel simulates the drive mechanism of the
system, a large heavy wheel simulates the driven
wheel whose desired acceleration is at a maximum
for the given conditions, a potentiometer simulates
an accelerator which controls the voltage sent to
the motor, a circuit counts the rotations of the
wheels which is very similar to what would actually
be used.

Electronic Traction Control is a system that
would be very advantageous if applied to auto-
mobiles. Frequently, automobiles can encounter
surfaces with reduced traction, such as icy or wet
roads. If an automobile was equipped with Elec-
tronic Traction Control, wheel spin would be
eliminated allowing the automobile to accelerate at
a maximum for the given conditions.

There are two different ways that the motor
speed can be controlled: throttle control or ignition
control. The throttle control would involve placing
a solenoid online with the throttle linkage. When
the solenoid is energized the operator would have
direct control of the throttle. But as soon as the
back wheels begin to spin faster than the front
wheels the ontime of the solenoid would be
decreased until the speeds matched. The alter-
native method of control would be to cut the
ontime of the ignition system until the wheel speeds
matched. The program flow chart used in this
project is shown in Fig. 13.

CONCLUSION

In this paper, we presented a microprocessor
laboratory suitable for teaching a senior elective
microprocessor application course. This labor-
atory has successfully been used for the last four
years in the George W. Woodruff School of
Mechanical Engineering at Georgia Tech, and
about 30 students per academic year have com-
pleted this laboratory. It is offered only once a year.
Two other graduate microprocessor application
courses, also make use of this laboratory. About 60
graduate students per academic year use this labor-
atory. There is yet another category of students that
make use of this laboratory, such as those students
who are involved in microprocessor related special
projects. This class of students number about 15

I Initialization |

Wait For Interrupt

Interrupt

Reset Counters

Decelerate

Fig. 13. Program flow chart for electronic traction control.

per academic year. The feedback from those who
have completed this lab along with the elective
microprocessor applications design course, especi-
ally those who took industrial positions, has been
both positive and encouraging.

Five projects using the MC68HC11EVB micro-
computer have been described in this paper. These
projects introduce various aspects of micro-
processor-based design and the students get
familiar with various types of interfacing tech-
niques. It is important to note that this lab and the
course get high reviews from students. This is
because they are exposed to the types of course
work and projects that are generally associated
with electrical engineering, but this time with
mechanical applications.

Acknowledgements—The authors would like to express their
appreciation to all the students who contributed in one way or
the other in the projects presented here. We would also like to
thank SME foundation, and CIMS program at Georgia Tech for
providing equipment grant and curriculum development
funding for this laboratory. Finally, we are grateful to Motorola
Corporation for donating the MC68CH11EVBs and MC6801
used in these projects.

REFERENCES

1. J.J. Jonsson, Ed., Special Issues on Microprocessors in Electrical Engineering Education. IEEE

Trans. Educ., E-24 (Feb.-May 1981).

(3]

Educ.,E-24,8-14 (Feb. 1981).

. D.F. Hanson, A Microprocessor Laboratory for Electrical Engineering Seniors. IEEE Trans.

3. J.R.Glover, Jr. and J. D. Bargainer, Integrating Hardware and Software in a Computer Engineering
Laboratory. IEEE Trans. Educ.,E-24,22-27 (Feb. 1981).

E =N

E-24, 43-46 (Feb. 1981).

. S. V.Iyengar and I. L. Kinney, A Design-Oriented Microprocessor Laboratory, IEEE Trans. Educ.,

50

15.
16.
L7,

18.

20.

21

C. Umeagukwu and M. Chouchane

B. Furht and P. S. Liu, A Advanced Laboratory for Microprocessor Interfacing and Communica-
tion, IEEE Trans. Educ.,42(2), (May 1989).

. W.J. Wepfer and R. L. T. Oehmke, Computer Based Data Acquisition in the Undergraduate Lab,

Comput. educ. 00(0) (1986).

. W.J. Wepfer and R.L.T. Ochmke, Computers in Mechanical Engineering Instrumentation

Laboratory at Georgia Tech, Int. J. Appl. Engng. Ed. 1,415-421 (1985).

. W.C. Lin, A Program of Blending Hardware/Software on Microprocessors in Education, /EEE

Trans. Educ.,E-24,108-112 (May 1981).

. D.W. Bray, S. C. Crist and R. A. Meyer, A Microcomputer Laboratory and Its Courses, /EEE

Trans. Educ.,E-24,149-154 (May 1981).

. F.J. Looft and W.H. Egginmann, Microprocessor-based Projects at Worcester Polytechnic

Institute, /[EEE Trans. Educ.,E-26,85-91 (Aug. 1983).

. N. R. Malik, A Service Course on Microcomputers, IEEE Trans. Educ.,E-27,6-13 (Feb. 1984).
. F. DeCesare, S.M. Bunten and P.M. DeRusso, Microcomputers for Data Acquisition—A

Laboratory Course for Pre-Engineering Students, IEEE Trans. Educ.,E-28, 69-75 (May 1985).

. Y. Kim and T. Alexander, A New Project-Oriented Computer Engineering Course in Digital

Electronics and Computer Design, IEEE Trans. Educ.,E-29,157-165 (Aug. 1986)

. K.L. Short, E.J. Sarpa and S.D. Shapiro, An Innovative Program of University/Industry

Cooperation in Microprocessor Education, /EEE Trans. Educ.,E-29, 111-114 (May 1986).

R. Bishop, Basic Microprocessors and the 6800, Hayden (1985).

A. C. Staugaard, Jr., How to Program and Interface the 6800, Howard W. Sams (1985).

A. C. Staugaard, Jr., 6801, 68701 and 6803 Microcomputer Programming and Interfacing, H. W.
Sams (1980).

J. B. Peatman, Design with Microcontrollers, McGraw-Hill, New York (1988).

. Motorola, HCMOS Single-Chip Microcontroller, Motorola Semiconductor Technical Data (1988).

Motorola, M68HC11EVB Evaluation Board, User’s Manual (1986).
Motorola, M68HC11 HCMOS Single-Chip Microcomputer, Programmer’s Reference Manual
(1986).

